
 1

D5.1 Curriculum development of the short cycle
program JAVA DEVELOPER

Project Acronym: PT&SCHE

Project full title: Introduction of part-time and short-cycle studies in Serbia

Project No: 561655-EPP-1-2015-1-EE-EPPKA2-CBHE-SP(2015-3431/001-001)

Funding Scheme: ERASMUS+

Coordinator: TLU – Tallinn University

Project start date: October 15, 2015

Project duration: 36 months

Abstract

This report provides the information on developed curriculum of the pilot
implementation of the online short-cycle in higher education (SCHE)
program JAVA DEVELOPER. Its aim is to provide the qualification of a
Java Developer after 12 months with 600 online and F2F hours of
education and training, It consists of 13 courses and a Internship lasting
two months. The students that successfully submit all assignments and
projects for 13 courses and complete it two months internship, is awared
with a Certificate.
As a pilot program, the curriculum and organization of the SCHE
program has been developed according to deliverables of
WP2. Development of legal frameworks for implementation for
PT&SCHE

The European Commission support for the production of this publication does not constitute an

endorsement of the contents which reflects the views only of the authors, and the Commission cannot
be held responsible for any use which may be made of the information contained therein

 2

DOCUMENT CONTROL SHEET

Title of Document:
D5.1 Curriculum development of the short cycle program JAVA
DEVELOPER

Work Package: WP5. Pilot implementation of online PT & SCHE programs

Last version date: 11/07/2017

Status : Draft

Document Version: 1.0

File Name Development of online SCHE JAVA DEVELOPER

Number of Pages 92

Dissemination Level Institutional

VERSIONING AND CONTRIBUTION HISTORY

Version Date Revision Description Responsible Partner

0.9 1.5.2017 Concept development Dragan Domazet, BMU

1.0 11.7.2017 Completed draft version Dragan Domazet, BMU

 3

TABLE OF CONTENT

1 SPECIFICATION OF THE ICT JOB PROFILE: DEVELOPER .. 4
1.1 Relevant EU Policy Documents .. 4

1.1.1 European ICT Professional Profiles .. 4
1.1.2 The European e-Competence Framework ... 7

1.2 The role and competences of a Developer ... 10
1.2.1 The specification of the profile ... 10
1.2.2 e-competences required ... 11

1.3 The Body of Knowledge .. 16
1.3.1 The European Foundational ICT Body of Knowledge... 16
1.3.2 The Body of Knowledge for Developer SCHE Programme ... 26

2 THE SHORT CYCLE PROGRAMME FOR THE PROFILE ICT PROFESSIONAL JAVA
DEVELOPER ... 28

2.1 Organisation structure of a Short Cycle Program .. 28
2.2 Relationships between e-competences and BMU e-courses ... 31

2.2.1 Acquiring the e-competence B.1. Design and Development (Level 3) 32
2.2.2 Acquiring the e-competence B.2. System Integration (Level 2) 33
2.2.3 Acquiring the e-competence B.3.Testing (Level 2) .. 34
2.2.4 Acquiring the e-competence B.5. Documentation Production (Level 3) 34
2.2.5 Acquiring the e-competence C.4. Problem Management (Level 3) 35
2.2.6 The List of BMU e-Courses Related to c-competences Specified for the ICT Profile
Developer ... 36
2.2.7 Mapping of BMU Bachelor Courses into SCHE Java Developer Courses 37

3 COURSES OF SCP JAVA DEVELOPER ... 38
3.1 Sequence of courses of SCHE Java Developer ... 38
3.2 Syllabi of Programming Module Courses ... 38

3.2.1 Course 1: Introduction to IT Systems .. 39
3.2.2 Course 2: Programming Fundamentals .. 44
3.2.3 Course 3: JAVA 1: Fundamentals of Programming ... 46
3.2.4 Course 4: Java 2: Object-oriented programming .. 52
3.2.5 Course 5: Java 3: GUI Programming .. 57
3.2.6 Course 6: Java 4: Data Structures and Algorithms – Part A .. 62
3.2.7 Course 7: Java 5: Data Structures and Algorithms – Part B .. 66
3.2.8 Course 8: Java 6: Java ME.. 70
3.2.9 Course 9: Java 7: Advanced Java Programming .. 72
3.2.10 Course 10: Java 8: Java Enterprise Edition ... 75
3.2.11 Course 11: Software Development Process and Methodologies 79
3.2.12 Course 12: Software Construction .. 84
3.2.13 Course 13: Software Development Project ... 87

4 Pedagogical Approach to SCHE courses ... 90

 4

CURRICULUM DEVELOPMENT OF SCHE “JAVA
DEVELOPER”

1 SPECIFICATION OF THE ICT JOB PROFILE:
DEVELOPER

1.1 Relevant EU Policy Documents

1.1.1 European ICT Professional Profiles

“European ICT Professional Profiles”, CWA 16458,is the second relevant
document that is the CEN Workshop Agreement document (CEN stands for
European Committee for Standardization). This Workshop Agreement has been
endorsed by the National Members of CEN, but this is not t an official standard
developed by CEN and its Members. The following paragraphs are the citations from
this document:

“As a response to the huge number of ICT Profile Frameworks and Profile
descriptions used today in European ICT Business and Qualification systems, it was
decided to create a number of representative ICT Profiles covering, at their level of
granularity, the full ICT Business process.

The profiles may be used for reference, or for the basis to develop further profile
generations, by European stakeholders. Structured from six main ICT Profile
families, these Profiles reflect the top of a European ICT Profiles family tree
(Figure 1.1.). The concept devised is broadly analogous to human genetics where
the genes of one generation pass down to the next. In the same way it is envisaged
that the core components of the 23 Generation 2 Profiles will pass down to profiles
constructed to meet specific stakeholder requirements. The 23 Profiles constructed
in this CWA combined with e-competences from the e-CF, provide a gene pool for
the development of tailored profiles that may be developed by European ICT sector
players in specific contexts and with higher levels of granularity.

The 23 multi-stakeholders agreed that ICT Profile descriptions are based on the
European e-Competence Framework (e-CF). European ICT Profiles and e-
Competence are complementary concepts that can significantly support the
development and management of a world class ICT professional community within
Europe.

Applied at the same level of granularity as the e-CF, the European ICT Profiles
provide generic skeletons of the most representative Profile prototypes currently
used in ICT Business structures.”

 5

Figure 1.1 European ICT Profile Family Tree – Generation 1 and 2 as a shared
European reference

“To add value, the European ICT Profiles must be adaptable to the employment
environment. They are not useful if, on the contrary, the employer has to change
practices to meet profile descriptions.

The European ICT Profile descriptions are therefore reduced to core components
and constructed to clearly differentiate one from each other. Further context-specific
elements can be added to the Profiles according to the specific environments in
which the Profiles are to be integrated. Clause 4 explains how the European ICT
Profiles can be used and adapted by any European stakeholder from a business,
qualification or from a research perspective.

The 23 Profiles cover the full ICT Business process; positioning them into the e-CF
Dimension 1 demonstrates this. Figure 1.2 below illustrates this together with the ICT
Profiles family structure.

The European ICT Profiles build a consistent bridge between existing competence
and profile approaches. In some European Countries, job profile creation is
deployed as the traditional methodology for identifying and driving both
organisational career paths and educational curriculum. Other countries deploy a
competence-oriented approach, appreciating that the competence approach
provides more flexibility.

In the European ICT Profiles development, the advantages of both approaches have
been combined. The European ICT Profiles present e-Competences in an
operational context. e-Competences provide the European ICT Profiles with core

 6

content in terms of capabilities needed to successfully perform a role. This provides
the flexibility to make Profiles applicable EU-wide yet usable in a workplace
environment.

Figure 1.2 European ICT Professional Profiles structured by six families and
positioned within the ICT Business Process (e-CF Dimension 1)

By embedding e-Competence within ICT Profiles, which can be readily understood
by experts or laymen, the European ICT Profile Family provides a universally
applicable solution for communication between stakeholders with interests in ICT
skills, knowledge and attitude development.”

ICT Profiles are not totally isolated from each other. Those that interact with each
other more closely, create a Profile Cluster. Figure 1.3 shows some of Profiles
Clusters from the Design and Development Profile families.

Figure 1.3 ICT Profile Clusters related to Design and Developmenti Profile families.

 7

1.1.2 The European e-Competence Framework

The CWA (CEN Workshop Agreement) document: “The European e-Competence
Framework (e-CF) version 3.0” is the result of 8 years continuing effort and
commitment by multi-stakeholders from the European ICT sector.

Figure 1.4: 40 e-Competences defined by the European e-Competence Framework

 8

The European e-Competence Framework (e-CF) version 3.0 provides a reference of
40 competences as required and applied at the Information and Communication
Technology (ICT) workplace, using a common language for competences, skills and
capability levels that can be understood across Europe. As the first sector-specific
implementation of the European Qualifications Framework (EQF), the e-CF was
created for application by ICT service, user and supply companies, for managers
and human resource (HR) departments, for education institutions and training bodies
including higher education, for market watchers and policy makers, and other
organisations in public and private sectors.

“The e-CF supports the definition of jobs, training courses, qualifications, career
paths, formal and non-formal learning paths, certifications etc. in the ICT sector. In
this way, local, national, European and global ICT vendor and user companies as
well as qualification and certification providers have access to a shared reference.”

The European e-Competence Framework is structured from four dimensions (Figure
1.4). These dimensions reflect different levels of business and human resource
planning requirements in addition to job / work proficiency guidelines and are

specified as follows:

Dimension 1: 5 e-Competence areas, derived from the ICT business processes
PLAN – BUILD – RUN – ENABLE – MANAGE (see Figure 1.2)

Dimension 2: A set of reference e-Competences for each area, with a generic
description for each competence. 40 competences identified in total provide the
European generic reference definitions of the e-CF 3.0.

Dimension 3: Proficiency levels of each e-Competence provide European reference
level specifications on e-Competence levels e-1 to e-5, which are related to the EQF
levels 3 to 8. (Table 1.1)

Dimension 4: Samples of knowledge and skills relate to e-Competences in
dimension 2. They are provided to add value and context and are not intended to be
exhaustive.

Whilst competence definitions are explicitly assigned to dimension 2 and 3 and
knowledge and skills samples appear in dimension 4 of the framework, attitude is
embedded in all three dimensions.

Table 1.1.

EQF
Levels

EQF e-CF
Levels

e-CF Levels descriptions Typical
Tasks

8 Knowledge at the most advanced frontier, the most
advanced and specialised skills and techniques tosolve
critical problems in research and/or innovation,
demonstrating substantial authority, innovation,
autonomy, scholarly or professional integrity.

e-5 Principal

Overall accountability and
responsibility; recognised inside
and outside the organisation for
innovative solutions and for
shaping the future using
outstanding leading edge
thinking and knowledge.

IS strategy or
programme
management

7 Highly specialised knowledge, some of which is at the
forefront of knowledge in a field of work or study, as the
basis for original thinking, critical awareness of
knowledge issues in a field and at the interface between
different fields, specialised problem-solving skills in
research and/or innovation to develop new knowledge
and procedures and to integrate knowledge from
different fields, managing and transforming work or study

e-4 Lead Professional / Senior
Manager

Extensive scope of
responsibilities deploying
specialised integration capability
in complex environments; full

responsibility for strategic

IS strategy/
holistic
solutions

 9

contexts that are complex, unpredictable and require
new strategic approaches, taking responsibility for
contributing to professional knowledge and practice
and/or for reviewing the strategic performance of teams

development of staff working in
unfamiliar and unpredictable
situations

6 Advanced knowledge of a field of work or study,
involving a critical understanding of theories and
principles, advanced skills, demonstrating mastery and
innovation in solving complex and unpredictable
problems in a specialised field of work or study,
management of complex technical or professional
activities or projects, taking responsibility for decision-
making in unpredictable work or study contexts, for
continuing personal and group professional
development.

e-3 Senior Professional / Manager

Respected for innovative
methods and use of initiative in
specific technical or business
areas; providing leadership and
taking responsibility for team
performances and development

in unpredictabl environments.

Consulting

5 Comprehensive, specialised, factual and theoretical
knowledge within a field of work or study and an
awareness of the boundaries of that knowledge,
expertise in a comprehensive range of cognitive and
practical skills in developing creative solutions to
abstract problems, management and supervision in
contexts where there is unpredictable change, reviewing
and developing performance of self and others.

e-2 Professional

Operates with capability and
ndependence in specified
boundaries and may supervise
others in this environment;
conceptual and abstract model
building using creative thinking;
uses theoretical knowledge and
practical skills to solve complex
problems within a predictable
and sometimes unpredictable
context.

Concepts /
Basic
principles

4 Factual and theoretical knowledge in broad contexts
within a field of work or study, expertise in a range of
cognitive and practical skills in generating solutions to
specific problems in a field of work or study, self-
manageme nt within the guidelines of work or study
contexts that are usually predictable, but are subject to
change, supervising the routine work of others, taking
some responsibility for the evaluation and improvement
of work or study activities.

3 Knowledge of facts, principles, processes and general
concepts, in a field of work or study, a range of cognitive
and practical skills in accomplishing tasks. Problem
solving with basic methods, tools, materials and
information, responsibility for completion of tasks in work
or study, adapting own behaviour to circumstances in
solving problems.

e-1 Associate

Able to apply knowledge and
skills to solve straight forward
problems; responsible for own
actions; operating in a stable
environment.

Support /
Service

 10

1.2 The role and competences of a Developer

1.2.1 The specification of the profile

ICT Profile Summary statement:

Builds/codes ICT solutions and specifis ICT products according to the customer
needs.

Alternative titles:

 Component Developer

 Application Developer

 Programmer

Figure 1.5: Job profile specification of a Developer

 11

1.2.2 e-competences required

A Developer must have the following e-competence specified jn the European e-
Competence Framework 3.0:

B.1. Design and Development (Level 3)

B.2. System Integration (Level 2)

B.3.Testing (Level 2)

B.5. Documentation Production (Level 3)

C.4. Problem Management (Level 3)

For each of these e-competences we cite its specification from the document
European e-Competence Framework 3.0.

B.1. Design and Development (Level 3)

Figure 1.6: Knowledge and skills needed for e-competence B.1. Application
Development

 12

B.2. System Integration (Level 2):

Figure 1.7: Knowledge and skills needed for e-competence B.2. Component
Integration

 13

B.3.Testing (Level 2):

Figure 1.8: Knowledge and skills needed for e-competence B.3. Testing

 14

B.5. Documentation Production (Level 3):

Figure 1.9: Knowledge and skills needed for e-competence B.5. Document
Production

 15

C.4. Problem Management (Level 3):

Figure 1.10: Knowledge and skills needed for e-competence B.5. Problem
Management

 16

1.3 The Body of Knowledge

Specification of knowledge units and skills provided for each e-competence in the
previous section is not enough to specify the curriculum for a short cycle program for
a profile. The specifies required knowledge and skills are of very high level and need
to be specified at lower levels. This is the mission of a Body of Knowledge of a study
program. In our case we can use:

 The Foundation ICT Body of Knowledge, Version 1, 22 February 2015, a
report prepared for the European Commission, DG Internal Market, Industry,
Entrepreneurship and SMEs by the Service Contract: e-Skills: Promotion of
ICT Professionalism in Europe | No 290/PP/ENT/CIP/13/C/N01C011
prepared by Capgemini Consulting and Ernst & Young.

 The Software Engineering Body of Knowledge – SWEBOK 3.0, specified
by the IEEE Computer Society - see P. Bourque and R.E. Fairley, eds.,
Guide to the Software Engineering Body of Knowledge, Version 3.0,
IEEE Computer Society, 2014; www.swebok.org.

1.3.1 The European Foundational ICT Body of Knowledge

The European Foundational ICT Body of Knowledge is the base-level knowledge
required to enter the ICT profession and acts as the first point of reference for
anyone interested in working in ICT’.

The ultimate objective is to create a recognised and supported Foundational ICT
Body of Knowledge that:

 Serves as an entry point to get into ICT for anyone contemplating a career in
ICT and entering from other professions or wanting to digitise their current
job;

 Facilitates communication between and understanding of ICT professionals
in Europe in whatever sector they are active, thereby reducing risks and
strengthening ICT professionalism;

 Increases the supply and pool of ICT professionals and enhances the image
of ICT.

The definition of an ICT Professional is defined, as someone who should:

 Possess a comprehensive and up-to-date understanding of a relevant body of
knowledge;

 Demonstrate on-going commitment to professional development via an
appropriate combination of qualifications, certifications, work experience, non-
formal and / or informal education;

 Adhere to an agreed code of ethics / conduct and / or applicable regulatory
practices; and

 Through competent practice deliver value for stakeholders.

Some of the key challenges for the near future are to:

 Ensure that as many ICT professionals as possible have the necessary
relevant knowledge, skills and competence to deliver professional products
and service in today’s digital economy;

 Improve the quality of the ICT profession;
 Close the ICT resource and skills gap;
 Enhance growth in digital jobs in Europe;

 17

 Improve general ICT knowledge among professionals in other fields of
expertise.

The nature of ICT jobs is also changing. It is no longer enough to merely be a
technical expert. The industry needs professionals with a diversity of ICT knowledge
and skillsx. ICT professionals are also required to understand the business,
operational and HR management aspects. Industry is looking for multidisciplinary
ICT professionals, dual thinkers (i.e. people who have a good understanding of both
business and Technology) or T-shaped persons (see below). ICT is no longer a back
office support tool or one department within a company but permeates all the layers
and units of a company. ICT has moved itself to the forefront and become a key
strategic asset in everyday (professional) life. Therefore, it is no longer sufficient only
to have knowledge of one specific ICT domain.

The need for a broad IT systems viewpoint is essential, with the ability to understand
the possibilities and constraints of the various technologies and to talk a common
language with the diversity of people involved. This was expressed as a concept for
the first time by David Guest in 1991xi through the use of the T-shape metaphor,
which has been widely adopted since (Figure 1.11).

Figure 1.11 Shaped Skills Model

The vertical line of the T represents the depth of related skills and expertise in a
single field, whereas the horizontal bar is the ability to collaborate across disciplines
with experts in other areas and to apply knowledge in areas of expertise other than
one’s own. This model thus differs from another classic type: “I-shaped” – with a
deep understanding of one specific discipline, but not necessarily of any other. In the

 18

current ICT environment, employers find themselves trying to do a “T” job with “I”
people.

However, a professional who combines specialisation in a specific ICT domain with
relevant breadth of ICT knowledge is more easily employable and has a competitive
position on the market. Given that there has in the past been a particular focus on
depth, it is necessary to look more closely at the issue of breadth of knowledge. It is
all a matter of creating the right balance between the two.

The objective is to create T-shaped persons with as much as possible the same
elements in the horizontal bar. All ICT professionals should have the same DNA. It is
however often the case that ICT professionals have much in common, but have
different (job) profiles. The objective of a Body of Knowledge (BOK) is to define the
‘chromosomes’, or building blocks of the horizontal bar, in the ICT field and act as a
guide to the breadth of ICT knowledge required.

The EU Foundational ICT Body of Knowledge thus aims to provide guidance for
individuals, academia and industry, and hence contribute to developing tomorrow’s
multidisciplinary ICT professionals.

The structure of the Foundational ICT Body of Knowledge could be described as an
‘inverted T-model’, in which the horizontal axis shows the knowledge areas of the
ICT domain running from a predominantly strategic to a predominantly technological
perspective. The vertical axis corresponds to specific knowledge and skills an
individual should develop to specialise in one domain. We can assume that any ICT
professional wanting to go into a field different from that of their existing
specialisation should come down to the horizontal bar (the base-level) and find a
connection to other knowledge areas in order to expand their breadth of knowledge.

The Foundational ICT Body of Knowledge provides the base-level knowledge that
ICT professionals require. However, considering the wide range of knowledge in the
ICT field, it has to be intended as a “permissive model” where every ICT professional
will acquire as much breadth as possible in terms of knowledge

In addition to the dimension of ICT core knowledge defined above, the European
Foundational ICT Body of Knowledge consists of a second dimension of
complementary base-level knowledge required to enter the ICT profession. This
dimension includes cross-cutting knowledge that cannot be considered purely in
relation to one ICT knowledge area but can be referred to, at different levels, in
relation to all core knowledge areas, i.e.:

 Legal, ethical, social and professional practices: including this knowledge
in the Foundational ICT Body of Knowledge serves to provide key reference
points for everyone interested in the ICT profession, as they are strongly
linked to the definition of the ICT profession itself. Legal, ethical, social and
professional practices need to be addressed at different levels at different
stages of professional development. Thevery nature of professional work
means that some knowledge and skills are best developed through
experience and that an understanding of complex issues, such as ethics,
grows with maturity. Further development will be provided at a full
professional level through participation in certification programmes.

 Soft skills: including soft skills in the Foundational ICT Body of Knowledge
provides a concrete contribution to the evolution of the ICT profession. Soft
skills integrate the technical skills, providing a sound basis for developing

 19

“dual thinker” profiles, which are oriented towards team building, collaboration,
negotiation, e-leadership, etc.

 Emerging / disruptive technologies: given the fast growth in the disruptive
technologies of cloud, mobile, social and big data, which are predicted to
constitute 40% of the global market and 98% of growth by 2020, and the
expected creation of 4.4 million IT jobs globally to support big data – base-
level knowledge should be provided to improve an understanding of these
technologies and their impacts on business and society.

The BOK illustrated below (Figure 1.12) and expanded on in the following sections
presents the taxonomy of the high-level areas of knowledge that represent the
base level that starting ICT professionals should understand. These knowledge
areas are then broken down and described in further detail, including with a general
definition of the knowledge area, a detailed list foundational knowledge, reference to
the e-CF, potential job profiles and examples of specific Bodies of Knowledge,
certification and training opportunities.

Figure 1.12: Taxonomy of Foundational ICT Body of Knowledge

This Body of Knowledge aims to develop the next generation of ICT professionals,
e.g. young, rounded ICT professionals with a significant breadth of base-level
knowledge of ICT that allows them to further specialize within a particular discipline.

This Version 1.0 of the European Foundational ICT Body of Knowledge presents the
taxonomy of high-level areas of knowledge that represent the base level starting ICT
professionals should understand.

The following section presents 12 Knowledge Areas:

1. ICT Strategy & Governance
2. Business and Market of ICT
3. Project Management
4. Security Management
5. Quality Management
6. Architecture
7. Data and Information Management
8. Network and Systems Integration
9. Software Design and Development
10. Human Computer Interaction

 20

11. Testing
12. Operations and Service Management.

Each Knowledge Area is further detailed, including a:

1. Definition of the Knowledge Area;
2. List of items required as foundational knowledge necessary under this

Knowledge Area;
3. List of references to the e-Competence Framework (dimension 4: knowledge);
4. List of possible job profiles that require having an understanding of the

Knowledge Area;
5. List of examples of specific Bodies of Knowledge, certification and training

possibilities.

Figures 1.13-1.116 summarize the content of few Knowledge Areas, the most
relevant for the profile Developer:

 Software Design and Development

 Human Computer Interaction

 Data and Information Management

 Testing

These Knowledge Areas provide broader knowledge then needed for the Developer
profile, as it is related only to a part of one of five (Build) phases of the ICT Business
Process, as shown in Figure 1.2 earlier.

 21

Figure 1.13: Software Design and Development Knowledge Area

 22

Figure 1.14: Human-Computer Interaction Knowledge Area

 23

Figure 1.15: Testing Knowledge Area

 24

Figure 1.16: Data and Information Management Knowledge Area

As specified earlier, five ICT e-competences are required for the profile Developer:

B.1. Design and Development (Level 3)

B.2. System Integration (Level 2)

B.3.Testing (Level 2)

B.5. Documentation Production (Level 3)

C.4. Problem Management (Level 3)

 25

Figure 1.17 shows relationships of these five e-competences and 10 Knowledge
Areas of the ICT Foundation Body of Knowledge. It does nit mean the profile
Developer must know everything specified in these 10 Knowledge Areas. In so

me of them it is almost true, but in most of other Knowledge Areas is not the case, as
only a small portion of the Knowledge Area is needed. It will be the task of
curriculum development to be more specific and specify lower level knowledge units
and skills.

Figure 1.17: Relationships between Developer’s e-competences and Knowledge
Areas of the ICT Foundation Body of Knowledge

More specific, four Knowledge Areas of the profile Developer are shown in Figure
1.18 that shows relationships of the European ICT Professional Profiles and
Knowledge Areas of the ICT Foundation Body of Knowledge.

 26

Figure 1.19: Relationships between ICT Job Profiles and Knowledge Areas of the
ICT Foundation Body of Knowledge

Unfortunately, the ICT Foundation Body of Knowledge does not provide yet lower
levels of knowledge and it is not sufficient for a curriculum development. Therefore,
additional extensions (sub-topics) of the Bodies of Knowledge are needed.

1.3.2 The Body of Knowledge for Developer SCHE Programme

IEEE Computer Society specified two Bodies of Knowledge (BOK) that are relevant
for ICT Profile Developer:

1. Computer Science Curricula 2013 - Curriculum Guidelines for
Undergraduate Degree Programs in Computer Science, December 20,
2013, The Joint Task Force on Computing Curricula of Association for
Computing Machinery (ACM) and IEEE Computer Society

2. SWEBOK 3.0 – Guide to the Software Engineering Body of Knowledge,
Editors Pierre Bourque, École de technologie supérieure (ÉTS) and Richard
E. (Dick) Fairley, Software and Systems Engineering Associates (S2EA),
IEEE Computer Society

Knowledge areas and topics from these two Bodies of Knowledge are to be selected
according to specified of Knowledge Areas and e-competences required for ICT
Profile Developer specified in previous sections.

Figure 1.1 showed European ICT Profile Family Tree with Generation 1 and 2 of
ICT Profiles. 23 in total). As this SCHE Programme aims to educate and train Java

 27

Developers, i.e. developers of applications written in Java, we will create a
Generation 3 ICT Profile – Java Developer. We have to provide all competences
specified for ICT Profile Developer specified in previous sections, but extended with
specific competences of Java Developers.

 28

2 THE SHORT CYCLE PROGRAMME FOR THE PROFILE
ICT JAVA DEVELOPER

2.1 Organisation structure of a Short Cycle Program

In order to develop the required competences of a ICT Profile, such as Developer, a
learner must learn all knowledge units (such as topics and sub-topics of a
Knowledge Area) specified for the Profile and develop necessary skills. A course is
the basic set of knowledge and skills that a student must verify that he or she
acquired the specified knowledge and skills by passing an exam. To acquire all
competences required, a student must complete a number of courses by passing
their exams. The granularity of courses my be different and smaller courses are
usually preferable, as student can easier complete their assignment specified by
their syllabi and pass their exams.

In some cases courses are inter-related and can be grouped in modules. A short
cycle program may have any number of courses and modules. Figure 2.1 shows the
general structure of a short cycle program.

Figure 2.1: A typical organization structure of a Short Cycle Program

A Short Cycle Program must provide students with the required competences and
must qualify them for the specified job. In our case here, the job is the job of a Java
Developer, specified in the previous chapter. The Short Cycle Courses will be
defined in groups (Modules) related to the specific e-competences listed for the ICT
Profile Developer. Each Short Course contains a number of Lessons created by
Learning Objects (LO). BMU is using LO of fine granularity needed for personalized

 29

e-learning (BMU is strategically oriented to develop and implement personalized e-
learning). Small size LOs support LO reusability among different courses.

As shown in Figure 2.1, BMU offers three levels of Certificates:

1. Course Certificate - for all students that pass the final exams of a course.
2. Module Certificate - for all students that pass the final exams of a all course of

a Module planned for a SC Program.
3. Programme Certificate - for all students that pass the final exams of all

modules of a SC course.

 If a Short Cycle Programme does no contain modules, it provides only two
certificates: Course Certificate and Programme Certificate (Figure 2.2)

Figure 2.2: A Short-Cycle Programme without modules

Having in mind Figures 1.5 – 1.10, Figure 2.3 was created. It relates e-competence
levels (e-2 and e-3) with EQF levels (5 and 6) with five required e-competences (B1,
B2, B3, B5 and C4) for a ICT job profile JAVA DEVELOPER, as a 3rd level
specialization of ICT job profile DEVELOPER. The difference is that all e-
competences must be implemented with Java technology. The job profile short
description, mission, and main tasks are the same as for the ICT job profile
DEVELOPER.

Depending of the achieved e-competence level (e-2 or e-3) and EQF level (5 or 6), a
SCHE program may educate and train a Java Junior Developer or a Java Developer
(Figure 2.4). The pilot implementation od the SCHE JAVA DEVELOPER is
developed for Java Developer level (e-3 and EQF level 6).

 30

Figure 2.3: ICT job profile description for Java Junior Developer and Java Developer

Figure 2.4: Positioning of Java Junior Developer and Java Developer SCHE
programs in relation to EQF levels and e-Competence proficiency levels

 31

2.2 Relationships between e-competences and BMU e-courses

At this stage we need to identify the existing BMU e-courses that can be used in
Short Cycle HE Program JAVA DEVELOPER (or shorter, SCHE JAVA
DEVELOPER) for development of its Courses. It can significantly reduce the effort of
developing SCP JAVA DEVELOPER and its courses (Figure 2.5). As BMU bachelor
courses are based on SWEBOK, their parts of the Body of Knowledge are to be
mapped into BMU SCHE courses

Figure 2.5: Mapping of required e-competences into BMU bachelor courses and
courses of the BMU SCHE Java Developer

 32

2.2.1 Acquiring the e-competence B.1. Design and Development
(Level 3)

Figure 2.6 shows the list of knowledge areas required for ICT e-competence B.1.
Application Development, as well as the BMU e-courses that offer learning
objects (learning contents) corresponding to these knowledge areas. Using the
Software Engineering Body of Knowledge (SWEBOK 3.0) we will specify all needed
learning units that constitute each of the listed learning areas. The listed BMU e-
courses were developed to implement SWEBOK 3.0 , they provide learning objects
for all knowledge units that are part of SWEBOK 3.0 Knowledge Areas.

Figure 2.6: Knowledge areas of e-competence B.1. and related BMU e-courses

 33

2.2.2 Acquiring the e-competence B.2. System Integration (Level 2)

Figure 2.7 shows the knowledge areas required for the B.2. System Integration e-
competence and the BMU e-courses that provide learning objects corresponding to
the learning units of the listed knowledge areas. These learning units are specified in
the SWEBOK 3.0 (specified by IEEE Computer Society and AIS) for each learning
area.

Figure 2.7: The knowledge areas specified for the e-competence B.2. Component
Integration and related BMU e-courses.

 34

2.2.3 Acquiring the e-competence B.3.Testing (Level 2)

Figure 2.8 shows the knowledge areas required for the B.3. Testing e-competence
and the BMU e-courses that provide learning objects corresponding to the learning
units of the listed knowledge areas. These learning units are specified in the
SWEBOK 3.0 (specified by IEEE Computer Society and AIS) for each learning area.

Figure 2.8: The knowledge areas specified for the e-competence B.3. Testing and
related BMU e-courses.

2.2.4 Acquiring the e-competence B.5. Documentation Production
(Level 3)

Figure 2.9 shows the knowledge areas required for the B.5. Documentation
Production e-competence and the BMU e-courses that provide learning objects
corresponding to the learning units of the listed knowledge areas. These learning
units are specified in the SWEBOK 3.0 (for each learning area.

Figure 2.9: The knowledge areas specified for the e-competence B.5.
Documentation Production and related BMU e-courses.

 35

2.2.5 Acquiring the e-competence C.4. Problem Management (Level
3)

Figure 2.10 shows the knowledge areas required for the C.4. Problem Management
e-competence and the BMU e-courses that provide learning objects corresponding
to the learning units of the listed knowledge areas. These learning units are specified
in the SWEBOK 3.0 (for each learning area.

Figure 2.10: The knowledge areas specified for the e-competence C.4. Problem
Management and related BMU e-courses.

 36

2.2.6 The List of BMU e-Courses Related to c-competences
Specified for the ICT Profile Developer

After analyzing Figures 2.6 -2.10, Figure 2.11 was created showing the BMU e-
courses corresponding to all five e-competence specified for the ICT Profile Java
Developer.

Figure 2.8: The BMU e-courses related to five e-competences specified for the ICT
Profile Java Developer

 37

2.2.7 Mapping of BMU Bachelor Courses into SCHE Java Developer
Courses

Next step in development process of SCHE Java Developer courses if mapping of
BMU e-courses into SCHE Java Developer e-courses (Figure 2.9).

Figure 2.9: Mapping of BMU bachelor courses into SCHE Java Developer courses

Figure 2.10 shows created SCHE Java Developer courses. These courses takes
into account specifics of SCHE Java Developer. They have to provide more practical
and simpler explanation of programming concepts, more elaborated shown
examples, and many assignments for individual exercise of each student. In the
next chapter, syllabi of these courses will be specified.

Figure 2.10 Created SCHE Java Developer courses

 38

3 COURSES OF SCP JAVA DEVELOPER

3.1 Sequence of courses of SCHE Java Developer

The following table shows all courses and their planned sequence.

The following section specifies syllabi of these courses.

3.2 Syllabi of Programming Module Courses

The Programming Module provides the following SC Courses:

1. Introduction of IT Systems
2. Programming Fundamentals
3. JAVA 1: Fundamentals of Programming
4. JAVA 2: Object-Oriented Programming
5. JAVA 3: GUI Programming
6. JAVA 4: Data Structures and Algorithms – Part A
7. JAVA 5: Data Structures and Algorithms – Part A
8. JAVA 6: JAVA ME
9. JAVA 7: Advanced Java programming
10. JAVA 8: Java Enterprise Edition
11. Software Development Process and Methodologies
12. Software Construction
13. Software Development Project
14. Internship (8 weeks)

 39

3.2.1 Course 1: Introduction to IT Systems

Duration: 15 days, 12 online teaching days, 2 day workshop days

Number of hours: 3 hours per online/workshop day, Total: 42 hours

ECTS: 4

Day Hours
Teaching

units
Topics

Results – knowledge
or skills that the
students should

receive

1 3 Model of IT
Systems

Components of computer
systems
 Computer system
 System software
 Operating system
 Utilities
Application software
Computer Hardware
Central processing unit
Input / output devices
Memory
Data and information
Input and output devices

2 3

Operating
Systems

Overview of the operating
system functions
Operating system roles
Types of operating systems and
their characteristics
 Operating systems of personal
computers
 Operating systems server
 Real-time operating systems
 Mainframe operating systems
File system
Comparison of Windows and OS
Unis

3 3

Concepts
and
Fundamental
s of
Information
Management

Architecture
of Data
Organisation

Information systems: purpose,
use, value
Characteristics of data (quality,
accuracy, changes with time)
Challenges in data management
Life cycle of data
Database systems
Knowledge management
Data models
Relational model
Normal forms
Functional dependencies
1NF, 2NF, 3NF

 40

4 3

Data
Modelling

DDL i basic
form of
statement
SELECT

Conceptual model
Entity Relationship Diagrams
Logical models
Physical models
Standardized modeling in IDEF1
and UML

DDL: CREATE TABLE, CREATE
INDEX; ALTER TABLE, DROP
TABLE;
Commands CREATE TABLE,
CREATE INDEX; ALTER
TABLE, DROP TABLE;
Commands: INSERT, UPDATE,
DELETE
Examples of DDL commands for
creating database elements
Examples of applying the basic
form of the SELECT command
to display the unchanged table
contents
DMS: INSERT, UPDATE,
DELETE
Queries over one table showing
the unchanged content of the
table: SELECT ... FROM;

5

6

6

Web
Technologies

Development
of Web Sites

Architecture
of Information

Digital Media

Preged web technology: HTTP
Protocol, HTML / XHTML XML
Web interface
Availability issue
Web Accessibility Initiative
Web services
Hypertext / hypermedia:
Effective Communication,
Interfaces, Navigation Schemes,
Media Types
Web design process: Design by
user, Web design templates,
Organization of information
Digital libraries
Media formats
Tools for recording, creating and
producing
Compression
Broadcast media (Streaming
media)
Implementation and integration
Integration with the database

7 3 Inter- Architecture for System

 41

Systems
Communicati
on

Integration
DCOM, CORBA, RMI
Web Services and Middleware
Network programming
Messaging and routing services
Data transfer to lower.

8 3 Mapping and
Exchange of
Data

Meta data
Presentation and encoding of
data
XML, DTD, XML Schema
XML document parsing
XSL, XSLT and Xpath
Client-server programming

9 3

Integrative

Coding

Scripting
Technics

Techics of
Code Writing

Integrations

IPT3. Integrated coding: MVC,
singleton, factory method,
façade, proxy, decorator and
observer
Writing a script and the role of a
scripting language

Comparative presentation of
Adopt and Adapt techniques
compared to make
Versions and version
management
Components, interfaces and
integration
Infrastructure, middleware and
platforms

10

11

6

(HCI)Human-
Computer
Interacion:

Human
Factors

Ascpects of
HCI of
Application
Domains

Human-
Centered

Evaluation

Development
of effective
interfaces

Cognitive principles - perception,
memory, problem solving
Understanding the users
Design for man
Ergonomics
Types of environment
Cognitive models
Approach
Usability testing
Usability standards

User experience
Interaction styles
Matching interface elements to
user requirements
Biometrics
The stress syndrome caused by
repetition of the same operations
PHP language. Writing, analysis
and testing a script that includes

 42

selection, repetition, and
forwarding
Create a PHP document for your
purpose

12 3

Basics of
Computer
Networks

Routing

Physical
Layer

KStandardization bodies

OSI model
Internet model
Nodes and connections
IEEE 802.1
Routing algorithms
Routing protocols
Wireless and mobile connections
Commuted and packet transfer
Physical media
Satellite communications
Shannon's law
Multimedia technologies WWW
Databases and file servers

13

14

6 Information
Security and
Safty:
Fundamental
Aspects
Security
Mechanisms
Ataks
Security

Domains
Forensics
Information

States Model
of Risk
Analysis

Security
Services

History and terminology
Security way of thinking
Model for information security
(threats, vulnerability, attacks,
countermeasures)
Cryptography and cryptosystems

Types of attack
Security domains
Give an overview of possible
attacks on network and
computer resources
Legal system
Digital investigation and its
relationship with other
investigations
Rules of record
Media analysis
Searching and seizing the device
Transfer
Storage
Processing
Risk assessment
Costs
Availability
Integrity
Secrecy
Authentication
Non-repudiation

15 3 Final Students get examination questions To evaluate knowledge and

 43

examination

(in BMU
computer
rooms)

and problems

Exam duration - 3 hours

skills acquired during the
course

 44

3.2.2 Course 2: Programming Fundamentals

Duration: 11 days, 8 online teaching days, 2 day workshop days

Number of hours: 3 hours per online/workshop day, Total: 30 hours

ECTS: 3

Day Hours Teaching units Topics
Results – knowledge or
skills that the students

should receive

1,2 6 Problem Solving
Techniques

Programming
Fundamentals

What Is a computer?

Definition of Problem Solving

Formulating the Real Problem

Analyze the Problem

Design a Solution Search Strategy

Problem Solving Using Programs

The Programming Process

Programming Paradigms

To formulate and analyse
programmimg problems

To design a solution search
strategy

To understand the
programming process

To understand
programming paradigmes

2,3 6 Programming
Language
Basics

Programming Language Overview

Operating Systems

Syntax and Semantics of Programming
Languages

Low-Level Programming Languages

High-Level Programming Languages

Declarative vs. Imperative
Programming Languages

To understane the role of
operating systems

To difirentiate the syntax
and semantics of
programming languages

To understabd the
difference between low-
and high-level languages

To understand the
difference between
declarative and imperative
programming languages

4,5 6 Introduction of
algorithms and
problem-solving

Problem-solving strategies;

the role of algorithms in the problem-
solving process;

implementation strategies for
algorithms;

the concept and properties of
algorithms

To understabd the roel of
algorithms

To implement alogoritmes
in porgramming

To understand the concept
and properties of
algorithms

5,6 6 Implementation
of algorithms

Examples of algoritmic problem-solving
processes

Exercises and student assignments

To implement algorithms in
solving different problems

7 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects assignments

Students work on their project tasks
with assistance of instructors

To learn how to specify a
project

To learn how to organize
the project and to break-
down tasks

To implement acquired
knowledge during the
course

 45

8 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their project tasks
with assistance of instructors

To develop necessary Java
programs

To realize all programming
tasks of students’ project.

Presentation of the project
report

13 3 Final
examination

(in BMU
computer
rooms)

Students get examination questions
and problems

Exam duration - 3 hours

To evaluate knowledge and
skills acquired during the
course

 46

3.2.3 Course 3: JAVA 1: Fundamentals of Programming

Duration: 17 days, 14 online teaching days, 2 day workshop days

Number of hours: 3 hours per online/workshop day, Total: 48 hours

ECTS: 4

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1 3 Introduction
to Java

What is Java?
Specification, API, JDK,
and iDE

A simple Java program

Creating, compiling, and
executing a java program

Programming style and
documentation

Programming errors

Developing java programs
using NetBeans

Programming exercises

Programming assignment

To understand computer basics,
programs, and operating systems

To describe the relationship between Java
and the World Wide Web

To understand the meaning of Java
language specification, API, JDK, and IDE

To write a simple Java program

To display output on the console

To explain the basic syntax of a Java
program

To create, compile, and run Java
programs

To use sound Java programming style
and document programs properly

To explain the differences between syntax
errors, runtime errors, and logic errors

To develop Java programs using
NetBeans

2,3 6 Elementary
programmin

g in Java

Writing a simple program

Reading input from the
console

Identifiers

Variables

Assignment statements
and assignment
expressions

Named constants

Naming conventions

Numeric data types and
operations

Numeric literals

Evaluating expressions
and operator precedence

Case study: displaying the
current time

Augmented assignment
operators

Increment and decrement

To write Java programs to perform simple
computations

To obtain input from the console using the
Scanner class

To use identifiers to name variables,
constants, methods, and classes

To use variables to store data

To program with assignment statements
and assignment expressions

To use constants to store permanent data

To name classes, methods, variables, and
constants by following their naming
conventions

To explore Java numeric primitive data
types: byte, short, int, long, float, and
double

To read a byte, short, int, long, float, or
double value from the keyboard

To perform operations using operators +, -
, *, /, and %

To perform exponent operations using

 47

operators

Numeric type conversions

Software development
process

Case study: counting
monetary units

Common errors and
pitfalls

Programming exercises

Programming assignment

Math.pow(a, b)

To write integer literals, floating-point
literals, and literals in scientific notation (

To write and evaluate numeric
expressions

To obtain the current system time using
System.currentTimeMillis()

To use augmented assignment operators

To distinguish between postincrement and
preincrement and between postdecrement
and predecrement

To cast the value of one type to another
type

To describe the software development
process and apply it to develop the loan
payment program

To write a program that converts a large
amount of money into smaller units

To avoid common errors and pitfalls in
elementary programming

4,5 6 Selections
(program
branching)

Boolean data type

If statements

Two-way if-else
statements

Nested if and multi-way if-
else statements

Common errors and
pitfalls

Generating random
numbers

Case study: computing
body mass index

Case study: computing
taxes

Logical operators

Case study: determining
leap year

Case study: lottery

Switch statements

Conditional expressions

Operator precedence and
associativity

Debugging

Programming exercises

Programming assignment

To declare boolean variables and write
Boolean expressions using relational
operators

To implement selection control using one-
way if statements

To implement selection control using two-
way if-else statements

To implement selection control using
nested if and multi-way if statements

To avoid common errors and pitfalls in if
statements

To generate random numbers using the
Math.random() method

To program using selection statements for
a variety of examples (SubtractionQuiz,
BMI, ComputeTax)

To combine conditions using logical
operators (!, &&, ||, and ^)

To program using selection statements
with combined conditions (LeapYear,
Lottery)

To implement selection control using
switch statements

To write expressions using the conditional
expression

To examine the rules governing operator
precedence and associativity

To apply common techniques to debug

 48

errors

6,7 6 Loops The while loop

The do-while loop

The for loop

Which loop to use?

Nested loops

Minimizing numeric errors

Case studies

Keywords break and
continue

Case study: checking
palindromes

Case study: displaying
prime numbers

Programming exercises

Programming assignment

To write programs for executing
statements repeatedly using a while loop

To follow the loop design strategy to
develop loops

To control a loop with a sentinel value

To obtain large input from a file using
input redirection rather than typing from
the keyboard

To write loops using do-while statements

To write loops using for statements

To discover the similarities and
differences of three types of loop
statements

To write nested loops

To learn the techniques for minimizing
numerical errors

To learn loops from a variety of examples
(GCD, FutureTuition, Dec2Hex)

To implement program control with break
and continue

To process characters in a string using a
loop in a case study for checking
palindrome

To write a program that displays prime
numbers

8,9 6 Mathematica
l functions,
characters
and strings

Common mathematical
functions

Character data type and
operations

The string type

Case studies

Formatting console output

Programming exercises

Programming assignment

To solve mathematical problems by using
the methods in the Math class

To represent characters using the char
type

To encode characters using ASCII and
Unicode

To represent special characters using the
escape sequences

To cast a numeric value to a character
and cast a character to an integer

To compare and test characters using the
static methods in the Character class.

To introduce objects and instance
methods

To represent strings using the String
object

To return the string length using the
length() method

To return a character in the string using
the charAt(i) method

To use the + operator to concatenate

 49

strings

To return an uppercase string or a
lowercase string and to trim a string

To read strings from the console

To read a character from the console

To compare strings using the equals
method and the compareTo methods

To obtain substrings

To find a character or a substring in a
string using the indexOf method

To program using characters and strings
(GuessBirthday)

To convert a hexadecimal character to a
decimal value (HexDigit2Dec)

To revise the lottery program using strings
(LotteryUsingStrings)

To format output using the
System.out.printf method

10

11

6 Methods Defining a method

Calling a method

void method example

Passing arguments by
values

Modularizing code

Case study: converting
hexadecimals to decimals

Overloading methods

The scope of variables

Case study: generating
random characters

Method abstraction and
stepwise refinement

Programming exercises

Programming assignment

To define methods with formal parameters

To invoke methods with actual
parameters (i.e., arguments)

To define methods with a return value

To define methods without a return value

To pass arguments by value

To develop reusable code that is modular,
easy to read, easy to debug, and easy to
maintain

To write a method that converts
hexadecimals to decimals

To use method overloading and
understand ambiguous overloading

To determine the scope of variables

To apply the concept of method
abstraction in software development

To design and implement methods using
stepwise refinement

12

13

6 Single-
Dimensional
Arrays

Array basics

Case study: analyzing
numbers

Case study: deck of cards

Copying arrays

Passing arrays to
methods

Returning an array from a
method

To describe why arrays are necessary in
programming

To declare array reference variables and
create arrays

To obtain array size using
arrayRefVar.length and know default
values in an array

To access array elements using indexes

To declare, create, and initialize an array
using an array initializer

 50

Case study: counting the
occurrences of each letter

Variable-length argument
lists

Searching arrays

Sorting arrays

The arrays class

Command-line arguments

Programming exercises

Programming assignment

To program common array operations
(displaying arrays, summing all elements,
finding the minimum and maximum
elements, random shuffling, and shifting
elements)

To simplify programming using the for
each loops

To apply arrays in application
development (AnalyzeNumbers,
DeckOfCards)

To copy contents from one array to
another

To develop and invoke methods with
array arguments and return valueTo
define a method with a variable-length
argument list

To search elements using the linear or
binary search algorithm.

To sort an array using the selection sort
approach

To use the methods in the java.util.Arrays
class

To pass arguments to the main method
from the command line

14

3 Multi-
Dimensional
Arrays

Two-dimensional array
basics

Processing two-
dimensional arrays

Passing two-dimensional
arrays to methods

Case study: grading a
multiple-choice test

Case study: finding the
closest pair

Case study: sudoku

Multidimensional arrays

Programming exercises

Programming assignment

To give examples of representing data
using two-dimensional arrays

To declare variables for two-dimensional
arrays, create arrays, and access array
elements in a two-dimensional array using
row and column indexes

To program common operations for two-
dimensional arrays (displaying arrays,
summing all elements, finding the
minimum and maximum elements, and
random shuffling)

To pass two-dimensional arrays to
methods

To write a program for grading multiple-
choice questions using twodimensional
arrays

To solve the closest-pair problem using
two-dimensional arrays

To check a Sudoku solution using two-
dimensional arrays

To use multidimensional arrays

15 3 F2F Project
Workshop

(in BMU
computer

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and
to break-down tasks

To implement acquired knowledge during

 51

rooms,
optionally -
online)

the course

16 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

17 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills
acquired during the course

 52

3.2.4 Course 4: Java 2: Object-oriented programming

Duration: 13 days, 10 online teaching days, 2 day workshop days

Number of hours: 3 hours per online/workshop day, Total: 36 hours

ECTS: 3

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1,2 6 Classes and
objects

Defining classes for
objects

Example: defining classes
and creating objects

Constructing objects using
constructors

Accessing objects via
reference variables

Using classes from the
java library

Static variables, constants,
and methods

Visibility modifiers

Data field encapsulation

Passing objects to
methods

Array of objects

Immutable objects and
classes

The scope of variables

The this reference

Programming exercises

Programming assignment

To describe objects and classes, and use
classes to model objects

To use UML graphical notation to describe
classes and objects

To demonstrate how to define classes and
create objects

To create objects using constructors

To access objects via object reference
variables

To define a reference variable using a
reference type

To access an object’s data and methods
using the object member access operator
(.)

To define data fields of reference types
and assign default values for an object’s
data fields

To distinguish between object reference
variables and primitive data type variables

To use the Java library classes Date,
Random, and Point2D

To distinguish between instance and static
variables and methods

To define private data fields with
appropriate getter and setter methods

To encapsulate data fields to make classes
easy to maintain

To develop methods with object arguments
and differentiate between primitive-type
arguments and object-type arguments

To store and process objects in arrays

To create immutable objects from
immutable classes to protect the contents
of objects

To determine the scope of variables in the
context of a class

To use the keyword this to refer to the
calling object itself

3,4 6 Object-
oriented

Class abstraction and
encapsulation

To apply class abstraction to
develop software

 53

thinking

Thinking in objects

Class relationships

Case study: designing the
course class

Case study: designing a
class for stacks

Processing primitive data
type values as objects

Automatic conversion
between primitive types
and Wrapper class types

The BigInteger and
BigDecimal classes

The String class

The StringBuilder and
StringBuffer classes

Programming exercises

Programming assignment

To explore the differences between
the procedural paradigm and
object-oriented paradigm

To discover the relationships
between classes

To design programs using the
object-oriented paradigm

To create objects for primitive
values using the wrapper classes
(Byte, Short, Integer, Long, Float,
Double, Character, and Boolean)

To simplify programming using
automatic conversion between
primitive types and wrapper class
types

To use the BigInteger and
BigDecimal classes for computing
very large numbers with arbitrary
precisions

To use the String class to process
immutable strings

To use the StringBuilder and
StringBuffer classes to process
mutable strings

5,6 6 Inheritance
and
Polymorphis
m

Superclasses and
subclasses,

Superclasses and
subclasses methods

Using super keyword

Overriding methods
Overriding vs overloading,
Polymorphism

Dynamic binding

Casting objects and the
instanceof operator.

The Object’s equals
method

The ArrayList class

Case study: a custom
stack

The protected data and
methods

Preventing extending and
overriding

Programming exercises

To define a subclass from a superclass
through inheritance

To invoke the superclass’s constructors
and methods using the super keyword

To override instance methods in the
subclass

To distinguish differences between
overriding and overloading

To explore the toString() method in the
Object class

To discover polymorphism and dynamic
binding

To describe casting and explain why
explicit downcasting is necessary

To explore the equals method in the Object
class

To store, retrieve, and manipulate objects
in an ArrayList

To construct an array list from an array, to
sort and shuffle a list, andto obtain max
and min element from a list

 54

Programming assignment

To implement a Stack class using ArrayList

To enable data and methods in a
superclass accessible from subclasses
using the protected visibility modifier

To prevent class extending and method
overriding using the final

7,8 6 Exception
Handling and
Text I/O

Exception-Handling
Overview

Exception types

More on exception
handling

The finally clause

When to use exceptions

Rethrowing exceptions

Chained exceptions

Defining custom exception
classes

The File class

File input and output

Reading data from the
Web

Case study: Web Crawler

Programming exercises

Programming assignment

To get an overview of exceptions and
exception handling

To explore the advantages of using
exception handling

To distinguish exception types: Error (fatal)
vs. Exception (nonfatal)and checked vs.
unchecked

To declare exceptions in a method header

To throw exceptions in a method

To write a try-catch block to handle
exceptions

To explain how an exception is propagated

To obtain information from an exception
object

To develop applications with exception
handling

To use the finally clause in a try-catch
block

To use exceptions only for unexpected
errors

To rethrow exceptions in a catch block

 To create chained exceptions

To define custom exception classes

To discover file/directory properties, to
delete and rename files/ directories, and to
create directories using the File class

 55

To write data to a file using the PrintWriter
class

To use try-with-resources to ensure that
the resources are closed automatically

To read data from a file using the Scanner
class

To understand how data is read using a
Scanner

To develop a program that replaces text in
a file

To read data from the Web

To develop a Web Crawler

9

10

6 Abstract
Classes and
Interfaces

Abstract classes

Case study: the
AbstractNumber Class

Case study: Calendar and
GregorianCalendar

Interfaces

The Comparable interface

The Cloneable interface

Interfaces vs. abstract
classes

Case Study: the Rational
class

Class design guidelines

Programming exercises

Programming assignment

To design and use abstract classes

To generalize numeric wrapper classes,
BigInteger, and BigDecimal using the
abstract Number class

To process a calendar using the Calendar
and GregorianCalendar classes

To specify common behavior for objects
using interfaces

To define interfaces and define classes
that implement interfaces

To define a natural order using the
Comparable interface

To make objects cloneable using the
Cloneable interface

To explore the similarities and differences
among concrete classes, abstract classes,
and interfaces

To design the Rational class for processing
rational numbers

To design classes that follow the class-
design guidelines

11 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

12 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

 56

online)

13 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills
acquired during the course

 57

3.2.5 Course 5: Java 3: GUI Programming

Duration: 17 days, 14 online teaching days, 2 day workshop days

Number of hours: 3 hours per online/workshop day, Total: 48 hours

ECTS: 4

Day Hou
rs

Teaching
units

Topics Objectives – knowledge or skills that
the student should receive

1,2 6 Swing
Graphical
User
Interfaces
Basics (GUI)

Swing vs. AWT

The Java GUI API

Frames

Layout Managers

Using Panels as
Subcontainers

The Color Class

The Font Class

Common Features of
Swing GUI Components

Image Icons

JButton

JCheckBox

JRadioButton

Labels

Text Fields

Programming exercises

Programming assignment

To distinguish between Swing and AWT

To describe the Java GUI API hierarchy

To create user interfaces using frames,
panels, and simple GUI components .

To understand the role of layout managers
and use the FlowLayout, GridLayout, and
BorderLayout managers to lay out
components in a container

To use JPanel to group components in a
subcontainer

To create objects for colors using the Color
class

To create objects for fonts using the Font
class

To apply common features such as
borders, tool tips, fonts, and colors on
Swing components

To decorate the border of GUI components

To create image icons using the ImageIcon
class.To create and use buttons using the
JButton class.

To create and use check boxes using the
JCheckBox class

To create and use radio buttons using the
JRadioButton class

To create and use labels using the JLabel
class

To create and use text fields using the
JTextField class

3,4 6 Graphics in
Java

The Graphics class

Drawing Strings, Lines,
Rectangles, and Ovals

Case study: The
FigurePanel class

Drawing Arcs

Drawing Polygons and
Polylines

Centering a String using
the FontMetrics class

To draw graphics using the methods in the
Graphics class

To override the paintComponent method to
draw graphics on a GUI component

To use a panel as a canvas to draw
graphics

To draw strings, lines, rectangles, ovals,
arcs, and polygons

To obtain font properties using FontMetrics
and to display a text centered in a panel

To display an image on a GUI component

 58

Case study: The
MessagePanel class

Case study: The StillClock
class

Displaying images

Case study: The
ImageViewer class

Programming exercises

Programming assignment

To develop the reusable GUI components
FigurePanel, MessagePanel, StillClock,
and ImageViewer

5,6 6 Java FX -
Basics

JavaFX vs Swing and
AWT

The basic structure of a
JavaFX program

Panes, UI Controls, and
Shapes

Property binding

Common properties and
methods for Nodes

The Color class

The Font class

The Image and ImageView
classes

Layout Panes

Shapes

Case study: The
ClockPane class

Programming exercises

Programming assignment

To distinguish between JavaFX, Swing,
and AWT

To write a simple JavaFX program and
understand the relationship among stages,
scenes, and nodes

To create user interfaces using panes, UI
controls, and shapes

To update property values automatically
through property binding

To use the common properties style and
rotate for nodes

To create colors using the Color class

To create fonts using the Font class

To create images using the Image class
and to create image views using the
ImageView class

To layout nodes using Pane, StackPane,
FlowPane, GridPane, BorderPane, HBox,
and VBox

To display text using the Text class and
create shapes using Line,Circle,
Rectangle, Ellipse, Arc, Polygon, and
Polyline

To develop the reusable GUI component
ClockPane for displaying an analog clock

7,8 6 Event Driven
Programming

Events and Event Sources

Registering Handlers and
Handling Events

Inner classes

Anonymous Inner class
handlers

Simplifying Event Handling
Using Lambda
Expressions

Case study: Loan
Calculator

Mouse events

To get a taste of event-driven
programming

To describe events, event sources, and
event classes

To define handler classes, register handler
objects with the source object, and write
the code to handle events

To define handler classes using inner
classes

To define handler classes using
anonymous inner classes

To simplify event handling using lambda

 59

Key events

Listeners for Observable
Objects

Animation

Case study: Bouncing ball

Programming exercises

Programming assignment

expressions

To develop a GUI application for a loan
calculator

To write programs to deal with
MouseEvents

To write programs to deal with KeyEvents

To create listeners for processing a value
change in an observable object

To use the Animation, PathTransition,
FadeTransition, and Timeline classes to
develop animations

To develop an animation for simulating a
bouncing ball

9

10

11

12

12 JavaFX UI
Controls and
Multimedia

Labeled and Label

Button

CheckBox

RadioButton

TextField

TextArea

ComboBox

ListView

ScrollBar

Slider

Case study: Developing a
Tic-Tac-Toe game

Video and Audio

Case study: National Flags
and Anthems

Programming exercises

Programming assignment

To create graphical user interfaces with
various user-interface controls

To create a label with text and graphic
using the Label class and explore
properties in the abstract Labeled class

To create a button with text and graphic
using the Button class and set a handler
using the setOnAction method in the
abstract ButtonBase class (§16.3).

To create a check box using the CheckBox
class

To create a radio button using the
RadioButton class and group radio buttons
using a ToggleGroup

To enter data using the TextField class
and password using the PasswordField
class

To enter data in multiple lines using the
TextArea class

To select a single item using ComboBox

To select a single or multiple items using
ListView

To select a range of values using ScrollBar

To select a range of values using Slider
and explore differences between ScrollBar
and Slider

To develop a tic-tac-toe game

To view and play video and audio using
the Media, MediaPlayer, and MediaView

To develop a case study for showing the
national flag and playing anthem

13

3 Binary I/O How is text I/O handled in
Java?

Text I/O vs. binary I/O

Binary I/O classes

To discover how I/O is processed in Java

To distinguish between text I/O and binary
I/O

To read and write bytes using

 60

Case study: Copying files

Object I/O

Random-access files

Programming exercises

Programming assignment

FileInputStream and FileOutputStream

To filter data using the base classes
FilterInputStream and FilterOutputStream

To read and write primitive values and
strings using DataInputStream and
DataOutputStream

To improve I/O performance by using
BufferedInputStream and
BufferedOutputStream

To write a program that copies a file

To store and restore objects using
ObjectOutputStream and
ObjectInputStream

To implement the Serializable interface to
make objects serializable

To serialize arrays

To read and write files using the
RandomAccessFile class

14

3 Software
Testing with
JUnit

Software unit testing.

JUnit test

Metods of assertions
validation

Testing of aggregations.

Pameters in testing.

Testing of exceptions.

Use of @Rule

Programming exercises

Programming assignment

To understand what is unit testing.

To learn how to use JUnit test

To learn how to validate assertions.

To learn how to test aggregations.

To understand what are parameters in
testing.

To learn how to test exceptions.

To learn to use @Rule.

15 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

16 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

17 3 Final Students get examination
questions and problems

To evaluate knowledge and skills acquired
during the course

 61

examination

(in BMU
computer
rooms)

Exam duration - 3 hours

 62

3.2.6 Course 6: Java 4: Data Structures and Algorithms – Part A

Duration: 17 days, 14 online teaching days, 2 day workshop days, 4 ECTS

Number of hours: 3 hours per online/workshop day, Total: 45 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1,2 6 Recursion Recursion Definition,

Case Study: Computing
Factorials,

Case Study: Computing
Fibonacci Numbers,
Problem Solving Using
Recursion,

Recursive Helper Methods.

Case Study: Tower of
Hanoi,

Recursion vs. Iteration,
Tail Recursion.

Programming exercises

Programming assignment

To describe what a recursive method is
and the benefits of usingrecursion

To develop recursive methods for
recursive mathematical functions

To explain how recursive method calls are
handled in a call stack

To solve problems using recursion

To use an overloaded helper method to
design a recursive method

To implement a selection sort using
recursion

To implement a binary search using
recursion

To get the directory size using recursion

To solve the Tower of Hanoi problem using
recursion

To draw fractals using recursion

To discover the relationship and difference
between recursion and iteration

To know tail-recursive methods and why
they are desirable

3,4 6 Generics Motivations and benefits

Defining generic classes
and interfaces

Generic methods

Case study: sorting an
array of objects

Raw types and backward
compatibility

Wildcard generic types

Erasure and restrictions on
generics

Case study: generic matrix
class

Programming exercises

Programming assignment

To describe the benefits of generics

To use generic classes and interfaces

To define generic classes and interfaces

To explain why generic types can improve
reliability and readability

To define and use generic methods and
bounded generic types

To develop a generic sort method to sort
an array of Comparableobjects To use raw
types for backward compatibility

To explain why wildcard generic types are
necessary

To describe generic type erasure and list
certain restrictions and limitations on
generic types caused by type erasure

To design and implement generic matrix
classes

5,6 6 List, Stack,
Queue and

Collections,

Iterators,

To explore the relationship between
interfaces and classes in the Java
Collections Framework hierarchy

 63

PriorityQueue Lists,

The Comparator Interface,

Static Methods for Lists
and Collections

Case Study: Bouncing
Balls,

Vector and Stack Classes

Programming exercises

Programming assignment

To use the common methods defined in
the Collection interface for operating
collections

To use the Iterator interface to traverse the
elements in a collection

To use a foreach loop to traverse the
elements in a collection

To explore how and when to use ArrayList
or LinkedList to store a list of elements

To compare elements using the
Comparable interface and the Comparator
interface

To use the static utility methods in the
Collections class for sorting, searching,
shuffling lists, and finding the largest and
smallest element in collections

To develop a multiple bouncing balls
application using ArrayList

To distinguish between Vector and
ArrayList and to use the Stack class for
creating stacks

To explore the relationships among
Collection, Queue, LinkedList, and
PriorityQueue and to create priority queues
using the PriorityQueue class

To use stacks to write a program to
evaluate expressions

7,8 6 Set and Map Sets,

Comparing the
performance of Sets and
Lists,

Case study: counting
keywords

Maps.

Case study: Occurrences
of words,

Singleton and
Unmodifiable Collections
and Maps

Programming exercises

Programming assignment

To store unordered, nonduplicate elements
using a set

To explore how and when to use HashSet
LinkedHashSet or TreeSet to store a set of
elements.

To compare the performance of sets and
lists

To use sets to develop a program that
counts the keywords in a Java source file

To tell the differences between Collection
and Map and describe when and how to
use HashMap, LinkedHashMap, or
TreeMap to store values associated with
keys

To use maps to develop a program that
counts the occurrence of the words in a
text

To obtain singleton sets, lists, and maps,
and unmodifiable sets, lists, and maps,
using the static methods in the Collections
class

9 12 Developing Measuring algorithm To estimate algorithm efficiency using the

 64

10

11

12

Efficient
Algorithms

efficiency using big o
notation

Examples: determining big
O

Analyzing algorithm time
complexity

Finding Fibonacci numbers
using dynamic
programming

Finding greatest common
divisors using Euclid’s
algorithm

Efficient algorithms for
finding prime numbers

Finding the closest pair of
points using divide-and-
conquer

Solving the eight queens
problem using
backtracking

Computational geometry:
finding a convex hull

Programming exercises

Programming assignment

Big O notation

To explain growth rates and why constants
and nondominating terms can be ignored
in the estimation

To determine the complexity of various
types of algorithms).

To analyze the binary search algorithm

To analyze the selection sort algorithm

To analyze the Tower of Hanoi algorithm

To describe common growth functions
(constant, logarithmic, loglinear, quadratic,
cubic, exponential)

To design efficient algorithms for finding
Fibonacci numbers using dynamic
programming

To find the GCD using Euclid’s algorithm

To find prime numbers using the sieve of
Eratosthenes

To design efficient algorithms for finding
the closest pair of points using the divide-
and-conquer approach

To solve the Eight Queens problem using
the backtracking approach

To design efficient algorithms for finding a
convex hull for a set of

points

13

14

6 Sorting Insertion Sort

Bubble Sort

Merge Sort

Quick Sort

Heap Sort

Bucket Sort and Radix Sort

External Sort

Programming exercises

Programming assignment

To study and analyze time complexity of
various sorting algorithms

To design, implement, and analyze
insertion sort

To design, implement, and analyze bubble
sort

To design, implement, and analyze merge
sort

To design, implement, and analyze quick
sort

To design and implement a binary heap

To design, implement, and analyze heap
sort

To design, implement, and analyze bucket
sort and radix sort

To design, implement, and analyze
external sort for files that have a large
amount of data

15 3 F2F Project
Workshop

(in BMU

Distribution of projects
assignments

Students work on their

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

 65

computer
rooms,
optionally -
online)

project tasks with
assistance of instructors To implement acquired knowledge during

the course

16 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

17 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills acquired
during the course

 66

3.2.7 Course 7: Java 5: Data Structures and Algorithms – Part B

Duration: 16 days, 13 online teaching days, 2 day workshop days, 4 ECTS

Number of hours: 3 hours per online/workshop day, Total: 45 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1,2

6 Implementing
Lists, Stacks,
Queues,

and Priority
Queues

Common Features for Lists

Array Lists

Linked Lists

Stacks and Queues

Priority Queues

Programming exercises

Programming assignment

To design common features of lists in an
interface and provide skeleton
implementation in a convenience abstract
class

To design and implement an array list
using an array

To design and implement a linked list using
a linked structure

To design and implement a stack class
using an array list and a queue class using
a linked list

To design and implement a priority queue
using a heap

3,4 6 Binary
Search Trees

Binary search srees

Deleting elements from a
BST

Tree visualization and
MVC

Iterators

Case study: data
compression

Programming exercises

Programming assignment

To design and implement a binary search
tree

To represent binary trees using linked data
structures

To search an element in a binary search
tree

To insert an element into a binary search
tree

To traverse elements in a binary tree

To design and implement the Tree
interface, AbstractTree class, and the BST
class

To delete elements from a binary search
tree

To display a binary tree graphically

To create iterators for traversing a binary
tree

To implement Huffman coding for
compressing data using a binary tree

 67

5,6 6 AVL Trees Rebalancing Trees

Designing Classes for AVL
Trees

Overriding the insert
Method

Implementing Rotations

Implementing the delete
Method

The AVLTree Class

Testing the AVLTree Class

AVL Tree Time Complexity
Analysis

Programming exercises

Programming assignment

To know what an AVL tree is

To understand how to rebalance a tree
using the LL rotation, LR rotation, RR
rotation, and RL rotation

To design the AVLTree class by extending
the BST class

To insert elements into an AVL tree

To implement tree rebalancing

To delete elements from an AVL tree

To implement the AVLTree class

To test the AVLTree class

To analyze the complexity of search,
insertion, and deletion operations in AVL
trees

7,8 6 Hashing What Is Hashing?

Hash Functions and
Hash Codes

Handling Collisions
Using Open
Addressing

Handling Collisions
Using Separate
Chaining

Load Factor and
Rehashing

Implementing a Map
Using Hashing

Implementing Set
Using Hashing

Programming exercises

Programming assignment

To understand what hashing is and
what hashing is used for

To obtain the hash code for an
object and design the hash function
to map a key to an index

To handle collisions using open
addressing

To know the differences among
linear probing, quadratic probing,
and double hashing (§27.4).

To handle collisions using separate
chaining

To understand the load factor and
the need for rehashing

To implement MyHashMap using
hashing

To implement MyHashSet using
hashing

 68

9

10

11

9 Graphs and
Applications

Basic Graph Terminologies

Representing Graphs

Modeling Graphs

Graph Visualization

Graph Traversals

Depth-First Search (DFS)

Case Study: The
Connected Circles
Problem

Breadth-First Search
(BFS)

Case Study: The Nine
Tails Problem

Programming exercises

Programming assignment

To model real-world problems using
graphs and explain the SevenBridges of
Königsberg problem

To describe the graph terminologies:
vertices, edges, simple graphs,
weighted/unweighted graphs, and
directed/undirected graphs

To represent vertices and edges using
lists, edge arrays, edge objects, adjacency
matrices, and adjacency lists

To model graphs using the Graph
interface, the AbstractGraph class, and the
UnweightedGraph class

To display graphs visually

To represent the traversal of a graph using
the AbstractGraph.Tree class

To design and implement depth-first
search

To solve the connected-circle problem
using depth-first search

To design and implement breadth-first
search

To solve the nine-tail problem using
breadth-first search

12

13

6 Weighted
Graphs and
Applications

Representing Weighted
Graphs

The WeightedGraph Class

Minimum Spanning Trees

Finding Shortest Paths

Case Study: The Weighted
Nine Tails Problem

Programming exercises

Programming assignment

To represent weighted edges using
adjacency matrices and adjacency lists

To model weighted graphs using the
WeightedGraph class that extends the
AbstractGraph class

To design and implement the algorithm for
finding a minimum spanning tree

To define the MST class that extends the
Tree class

To design and implement the algorithm for
finding single-source shortest paths

To define the ShortestPathTree class that
extends the Tree class

To solve the weighted nine tails problem
using the shortest-path algorithm

13 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

 69

14 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

15 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills acquired
during the course

 70

3.2.8 Course 8: Java 6: Java ME

Duration: 14 days, 11 online teaching days, 2 day workshop days, 4 ECTS

Number of hours: 3 hours per online/workshop day, Total: 39 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills that

the student should receive

1

3 Introduction
to Java ME
platform

Configurations, Profiles,
Packages
CLDC
CDC
Java Class Library to Fit
the CLDC
Creating CLDC/MIDP
Application using NetBean
Creating CDC Application

2,3 6 CLDC
Development
with MIDP

Introducing MIDlets.
Building User Interfaces
Storing Data Using the
Record Store
Using the Java Mobile
Game API

4 3 CDC
Development

Introducing Xlets and the
Personal Basis Profile
Introducing Applets and
the Advanced Graphics
and User Interface
Using Remote Method
Invocation

5 3 Accessing
Remote Data
on the
Network

Generic Connection
Framework (GCF)
Communicating with
Sockets and Datagrams
Communicating with HTTP

6 3 Accessing
Web Services

Looking at a Web Service
from the Client Perspective
Exploring XML Support for
Web Services in Java ME

7 3 Messaging
with the
Wireless
Messaging
API

Wireless Messaging
Services
Wireless Messaging API
Using the Push Registry
Applying the Wireless
Messaging API

8 3 Securing
Java ME
Applications

Java ME’s Security and
Trust Services
Exploring the Bouncy
Castle Solution to Security
Challenges
Creating Secure
Commerce with
Contactless
Communications

 71

9 3 Rendering
Multimedia
Content

Introducing the MMAPI
Introducing the Java
Scalable 2D Vector
Graphics API
Putting the MMAPI and the
SVGAPI to Work

10 3 Using
Locations

Introducing the MMAPI
Introducing the Java
Scalable 2D Vector
Graphics API
Putting the MMAPI and the
SVGAPI to Work

11 3 Seeking a
Common
Platform

Understanding the Role
JSRs Play in
Fragmentation
Understanding the JTWI
Understanding the MSA

12 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

13 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

15 3 Final
6examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills acquired
during the course

Reference: Beginning Java™ ME Platform, Ray Rischpater, Apress, Inc., 2008

 72

3.2.9 Course 9: Java 7: Advanced Java Programming

Duration: 15 days, 12 online teaching days, 2 day workshop days, 4 ECTS

Number of hours: 3 hours per online/workshop day, Total: 42 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1

2

3

4

12 Multithreadin
g and Parallel
Programming

Thread Concepts

Creating Tasks and
Threads

The Thread Class

Case Study: Flashing Text

Thread Pools

Thread Synchronization

Synchronization Using
Locks

Cooperation among
Threads

Case Study:
Producer/Consumer

Blocking Queues

Semaphores

Avoiding Deadlocks

Thread States

Synchronized Collections

Parallel Programming

Programming exercises

Programming assignment

To get an overview of multithreading

To develop task classes by implementing
the Runnable interface

To create threads to run tasks using the
Thread class

To control threads using the methods in
the Thread class

To control animations using threads and
use Platform.runLater to run the code in
the application thread

To execute tasks in a thread pool

To use synchronized methods or blocks to
synchronize threads to avoid race
conditions

To synchronize threads using locks

To facilitate thread communications using
conditions on locks

To use blocking queues
(ArrayBlockingQueue,
LinkedBlockingQueue,
PriorityBlockingQueue) to synchronize
access to a queue

To restrict the number of concurrent tasks
that access a shared resource using
semaphores

To use the resource-ordering technique to
avoid deadlocks

To describe the life cycle of a thread

To create synchronized collections using
the static methods in the Collections class

To develop parallel programs using the
Fork/Join Framework

 73

5,6 6 Network
programming

Client/Server Computing

The InetAddress Class

Serving Multiple Clients

Sending and Receiving
Objects

Case Study: Distributed
Tic-Tac-Toe Games

Programming exercises

Programming assignment

7,8 6 Database
programming
(JDBC)

Relational Database
Systems

SQL

JDBC

PreparedStatement

CallableStatement,

Retrieving Metadata

Programming exercises

Programming assignment

Understanding relational databases
concept and RDBMS systems.
Understanding the relational model,
relational data structure, restrictions
and language.

SQL use in working with relational
databases. Set up and usage of
JDBC.

Application of memorized SQL
procedures and functions.

Work with metadata about a
database.

9

10

6 Java
Persistence
API

Entity Relations,

Automated generation of
JPA entities

Programming exercises

Programming assignment

Understanding ORM and complete
mastery of the application of ORM
tools in working with databases.

file:///C:/Users/Vladimir%20Milicevic/Documents/mDitaEditor/HTML/OUTPUT/CS230/L07/CS230-L07-pptlc6.html%23LC-06

 74

11

12

6 Java
Hibernate
ORM

Hibernate ORM –

Mapping objects in
database

Example of creation of a
persistent class

Hibernate Annotations

Hibernate Query
Language - HQL

Criteria of selection of
objects in HQL query

Using SQL in Hibernate
environment

Hibernate cashing

Hibernate batch
processing

Hibernate interceptors

Programming exercises

Programming
assignment

To implement Java Hibernate ORM
in Java applications.

13 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

14 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

15 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills acquired
during the course

 75

3.2.10 Course 10: Java 8: Java Enterprise Edition

Duration: 24 days, 21 online teaching days, 2 day workshop days, 7 ECTS

Number of hours: 3 hours per online/workshop day, Total: 69 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills that
the student should receive

1

2

6 Java EE -
Servlets

Java EE Platform

Introduction to Servlets

Creating and Deploying
Servlets

Data Flow

Servlet and Sessions

GlassFish Server

Programming exercises

Programming assignment

To understand the concept of distributed
systems and Java Enterprise Edition
platform basics.

Ability to create and use servelts in Java
enterprise applications.

3

4

5

6

12 Java Server
Pages (JSP)

JSP Architecture

JSP Life Cycle

JSP Syntax

JSP Directives

JSP Actions

JSP Imlicit Objects

Form Processing

JSP Filters

Cookies Handling in JSP

File Upload in JSP

Date Handling in JSP

Redirection in JSP

JSTL - JavaServer Pages
Standard Tag Library

JSP - Databases

JSP - JavaBean

JSP – Expression
Language

JSP Internationalization

Programming exercises

Programming assignment

Using JavaServer Pages (JSP), web
pages’ development technologies
supporinng dynamic content application,
and enabling Java code insertion into
HTML documents.

Mastering the advanced concept of
application principles of JSP pages in
JAVA web applications.

file:///C:/Users/Vladimir%20Milicevic/Documents/mDitaEditor/HTML/OUTPUT/CS230/L02/CS230-L02-pptlc3.html%23LC-03
file:///C:/Users/Vladimir%20Milicevic/Documents/mDitaEditor/HTML/OUTPUT/CS230/L04/CS230-L04-pptlc8.html%23LC-08
file:///C:/Users/Vladimir%20Milicevic/Documents/mDitaEditor/HTML/OUTPUT/CS230/L04/CS230-L04-pptlc9.html%23LC-09

 76

7

8

9

10

12 Java Server
Faces (JSF)

Introduction to JavaServer
Faces

Forms in JSF

Creating CDI named bean,
Implementing the
confirmation page,

JSF Validation.

Facelets templating,
Resource library contracts,
PrimeFaces Component
Library,

ICEFaces Component
Library,

RichFaces Component
Library

Programming exercises

Programming assignment

Using JSF technology for Java web
application development. Developing
advanced JSF applications, with simplified
approach through application of JSF
component libraries.

11

12

6 RESTFul
Web
Services
with JAX –
RS

Generating a RESTful web
service from an existing
database

Testing RESTful web
service

Generating RESTful Java
client code

Generating RESTful
JavaScript clients

for our RESTful web
services

Programming exercises

Programming assignment

Understanding and use of RESTFul Web
Services with JAX – RS.

13

14

6 Context and
Dependency
Injection

Introduction to CDI,

Qualifiers,

Sterotypes,

Interceptor Binding

Types ,

Custom CDI

Scopes

Programming exercises

Programming assignment

Understanding and use of CDI concepts
and techniques in Java EE applications.

file:///C:/Users/Vladimir%20Milicevic/Documents/mDitaEditor/HTML/OUTPUT/CS230/L06/CS230-L06-pptlc1.html%23LC-01
file:///C:/Users/Vladimir%20Milicevic/Documents/mDitaEditor/HTML/OUTPUT/CS230/L06/CS230-L06-pptlc1.html%23LC-01
file:///C:/Users/Vladimir%20Milicevic/Documents/mDitaEditor/HTML/OUTPUT/CS330/P13/CS330-P13-pptlo.html%23LO-P13

 77

15

16

6 JMS and
Message
Driven Beans

Introduction to JMS,

Creating JMS resources,

Implementing a JMS
message producer,

Consuming JMS
messages with message-
driven beans

Programming exercises

Programming assignment

Understanding and use of Java Messaging
System and message driven beans in Java
EE applications.

17

18

6 Java API for
JSON
processing

JSON-P object model
API,

Generating JSON data
with the JSON-P object

model API ,

Parsing JSON data with
the JSON-P object

model API ,

JSON-P streaming API,

Generating JSON data
with the JSON-P

streaming API,

Parsing JSON data with
the JSON-P streaming
API

Programming exercises

Programming assignment

Understanding and use of Java EE
mechanisms for JSON processing

19

3 Java API for
WebSocket

Examining the
WebSocket code using
samples included with
NetBeans,

Echo Application,

Examining the generated
Java code , Building our
own WebSocket

applications,

Java EE, WebSocket, JS i
HTML 5 – Case Study

Programming exercises

Programming assignment

Competence to create individual
WebSocket applications.

 78

20

21

6 Implementing
the Business
Tier with
Session
Beans

Introducing session beans

Creating a session bean,

Accessing the bean from a
client,

Session bean transaction
management

Implementing aspect-
oriented programming
with interceptors

EJB Timer servis

Generating session beans
from JPA entities

Programming exercises

Programming assignment

To implement Session beans in Java EE
applications.

22 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

23 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

24 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills acquired
during the course

 79

3.2.11 Course 11: Software Development Process and
Methodologies

Duration: 18 days, 15 online teaching days, 2 day workshop days, 5 ECTS

Number of hours: 3 hours per online/workshop day, Total: 21 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1

3 Introduction Professional software
development

Software engineering
ethics

Case studies

Programming exercises

Programming assignment

To understand what software engineering
is and why it is important;

To understand that the development of
different types of software

systems may require different software
engineering techniques;

To understand some ethical and
professional issues that are important

for software engineers;

To have been introduced to three systems,
of different types, that will be

used as examples throughout the book.

2

3

6 Software
Processes

Software process models

Process activities

Coping with change

The Rational Unified
Process

Programming exercises

Programming assignment

To understand the concepts of software
processes and software process

models;

To have been introduced to three generic
software process models and

when they might be used;

To know about the fundamental process
activities of software

requirements engineering, software
development, testing, and

evolution;

To understand why processes should be
organized to cope with changes

in the software requirements and design;

To understand how the Rational Unified
Process integrates good software

engineering practice to create adaptable
software processes.

 80

4

5

6 Agile
Software
Development

Agile methods

Plan-driven and agile
development

Extreme programming

Agile project management

Scaling agile methods

Programming exercises

Programming assignment

To understand the rationale for agile
software development methods, the agile
manifesto, and the differences between
agile and plan-driven

development;

To know the key practices in extreme
programming and how these relate to the
general principles of agile methods;

To understand the Scrum approach to
agile project management;

To be aware of the issues and problems of
scaling agile development methods to the
development of large software systems.

6

7

6 Requirement
s

engineering

Functional and non-
functional requirements

The software requirements
document

Requirements specification

Requirements engineering
processes

Requirements elicitation
and analysis

Requirements validation

Requirements
management

Programming exercises

Programming assignment

To understand the concepts of user and
system requirements and

why these requirements should be written
in different ways;

To understand the differences between
functional and nonfunctional

software requirements;

To understand how requirements may be
organized in a software

requirements document;

To understand the principal requirements
engineering activities of

elicitation, analysis and validation, and the
relationships between

these activities;

To understand why requirements
management is necessary and how

it supports other requirements engineering
activities

 81

8

9

6 System
modeling

Context models

Interaction models

Structural models

Behavioral models

Model-driven engineering

Programming exercises

Programming assignment

To understand how graphical models can
be used to represent

software systems;

To understand why different types of
model are required and the

fundamental system modeling
perspectives of context, interaction,

structure, and behavior;

To have been introduced to some of the
diagram types in the Unified

Modeling Language (UML) and how these
diagrams may be used in

system modeling;

To be aware of the ideas underlying
model-driven engineering, where a

system is automatically generated from
structural and behavioral

models.

10 3 Architectural
design

Architectural design
decisions

Architectural views

Architectural patterns

Application architectures

Programming exercises

Programming assignment

To understand why the architectural design
of software is important;

To understand the decisions that have to
be made about the system

architecture during the architectural design
process;

To have been introduced to the idea of
architectural patterns, well-tried

ways of organizing system architectures,
which can be reused in

system designs;

To know the architectural patterns that are
often used in different types

of application system, including transaction
processing systems and

language processing systems.

 82

11

12

13

9 Design and

implementati
on

Object-oriented design
using the UML

Design patterns

Implementation issues

Open source development

Programming exercises

Programming assignment

To understand the most important activities
in a general, objectoriented

design process;

To understand some of the different
models that may be used to

document an object-oriented design;

To know about the idea of design patterns
and how these are a way

of reusing design knowledge and
experience;

To have been introduced to key issues that
have to be considered when

implementing software,

14 3 Software
testing

Development testing

Test-driven development

Release testing

User testing

Programming exercises

Programming assignment

To understand the stages of testing from
testing, during development

to acceptance testing by system
customers;

To have been introduced to techniques
that help you choose test

cases that are geared to discovering
program defects;

To understand test-first development,
where you design tests before

writing code and run these tests
automatically;

To know the important differences between
component, system,

and release testing and be aware of user
testing processes and

techniques.

15 3 Software
evolution

Evolution processes

Program evolution
dynamics

Software maintenance

Legacy system
management

Programming exercises

Programming assignment

To understand that change is inevitable if
software systems are to remain useful and
that software development and evolution
may be integrated in a spiral model;

To understand software evolution
processes and influences on these

processes;

To have learned about different types of
software maintenance and

the factors that affect maintenance costs;
and

To understand how legacy systems can be
assessed to decide whether they should
be scrapped, maintained, reengineered,

or replaced.

 83

16 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

17 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

18 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills acquired
during the course

 84

3.2.12 Course 12: Software Construction

Duration: 21 days, 18 online teaching days, 2 day workshop days, 6 ECTS

Number of hours: 3 hours per online/workshop day, Total: 60 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1

2

6 Software
Construction
Fundamentals

1.1. Minimizing Complexity

1.2. Anticipating Change

1.3. Constructing for
Verification

1.4. Reuse

1.5. Standards in
Construction

To understand what is software
construction.

3

4

6 Managing
Construction

2.1. Construction in Life
Cycle Models

2.2. Construction Planning

2.3. Construction
Measurement

To be able to manage software
construction.

5

6

7

9 Practical
Consideration
s

3.1. Construction Design

3.2. Construction
Languages

3.3. Coding

3.4. Construction Testing

3.5. Construction for
Reuse

3.6. Construction with
Reuse

3.7. Construction Quality

3.8. Integration

To implement software construction
technics in design, coding, testing,
software reusing, quality and insoftware
integration

8

9

6 Construction
Technologies

4.1. API Design and Use

4.2. Object-Oriented
Runtime Issues

4.3. Parameterization and
Generics

4.4. Assertions, Design by
Contract, and Defensive
Programming

To learn to implement design API

To understand OO runtime issues

To implement parameterization and
generics

To implement assertions, design by
contract and defensive programming

10

11

6 4.5. Error Handling,
Exception Handling, and
Fault Tolerance

4.6. Executable Models

4.7. State-Based and
Table-Driven Construction
Techniques

To implement error handling, exeption
handling and fault tolerance

To use executable models

To implement state-based and table-driven
construction techniques

 85

12

13

6 4.8. Runtime Configuration
and Internationalization

4.9. Grammar-Based Input
Processing

4.10. Concurrency
Primitives

4.11. Middleware

To implement runtime configuration and
internationalization

To implement grammar-based input
processing

To implement concurrency primitives

To implement middleware

14

15

6 4.12. Construction
Methods for Distributed
Software

4.13. Constructing
Heterogeneous Systems

4.14. Performance
Analysis and Tuning

4.15. Platform Standards

4.16. Test-First

To implement construction methods for
distributed software

To implement constructing of
heterogeneous systems

To use performance analysis and tunng

To implement platform standards

To implement test/first approach

17

18

6 Software
Construction

Tools

5.1. Development
Environments

5.2. GUI Builders

5.3. Unit Testing Tools

5.4. Profiling, Performance
Analysis, and Slicing Tools

Matrix of Topics vs.
Reference Material

To be able to use development
environments and tools, such as GUI
builders, unit testing tools, profiling,
performance analysis and slicing tools

19 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Distribution of projects
assignments

Students work on their
project tasks with
assistance of instructors

To learn how to specify a project

To learn how to organize the project and to
break-down tasks

To implement acquired knowledge during
the course

20 3 F2F Project
Workshop

(in BMU
computer
rooms,
optionally -
online)

Students work on their
project tasks with
assistance of instructors

To develop necessary Java programs

To realize all programming tasks of
students’ project.

Presentation of the project report

 86

21 3 Final
examination

(in BMU
computer
rooms)

Students get examination
questions and problems

Exam duration - 3 hours

To evaluate knowledge and skills acquired
during the course

 87

3.2.13 Course 13: Software Development Project

Duration: 16 days, 5 online teaching days, 10 days workshop days, 4 ECTS

Number of hours: 3 hours per online/workshop day, Total: 45 hours

Day
Ho-
urs

Teaching
units

Topics
Objectives – knowledge or skills
that the student should receive

1 3 Project
Management

Risk management

Managing people

Teamwork

To know the principal tasks of software
project managers;

To have been introduced to the notion of
risk management and some of

the risks that can arise in software
projects;

To understand factors that influence
personal motivation and what these

might mean for software project managers;

To understand key issues that influence
team working, such as team

composition, organization, and
communication.

2 3 Project
Planning

Software pricing

Plan-driven development

Project scheduling

Agile planning

Estimation techniques

To understand the fundamentals of
software costing and reasons why the
price of the software may not be directly
related to its

development cost;

To know what sections should be included
in a project plan that is

created within a plan-driven development
process;

To understand what is involved in project
scheduling and the use of bar

charts to present a project schedule;

To have been introduced to the ‘planning
game’, which is used to support

project planning in extreme programming;

To understand how the COCOMO II model
can be used for algorithmic

cost estimation.

 88

3 3 Quality
Management

Software quality

Software standards

Reviews and inspections

Software measurement
and metrics

To understand to the quality management
process and know why quality planning is
important;

To understand that software quality is
affected by the software development
process used;

To be aware of the importance of
standards in the quality management

process and know how standards are used
in quality assurance;

To understand how reviews and
inspections are used as a mechanism for

software quality assurance;

To understand how measurement may be
helpful in assessing some software quality
attributes and the current limitations of
software measurement.

4 3 Configuration
Management

Change management

Version management

System building

Release management

To understand the processes and
procedures involved in software change

management;

To know the essential functionality that
must be provided by a version

management system, and the relationships
between version

management and system building;

To understand the differences between a
system version and a system

release, and know the stages in the
release management process.

5 3 Service-
Oriented
Software
Engineering

Service-oriented
Architecture

Services as reusable
components

Service engineering

 Software development
with services

To understand the rationale for software
process improvement as a means of
improving both product quality and the
efficiency and effectiveness of software
processes;

To understand the principles of software
process improvement and the

cyclic process improvement process;

To know how the Goal-Question-Metric
approach may be used to guide

process measurement;

To have been introduced to the ideas of
process capability and process

maturity, and the general form of the SEI’s
CMMI model for process

improvement.

 89

6

7

8

9

10

11

12

13

14

15

30 Software
Development
Project

Students spend 3 hours in
a computer room and
develop their group
projects (cc 5 students per
project). Their instructor is
helping them during the
software development.

Students may choose to
work online instead F2F.

To implement software management
knowledge

To develop a software using quality
management principles, and configuration
management

16 1 Final
examination

(in BMU
computer
rooms)

Presentation of projects To demonstrate their ability to develop a
software, as a team.

 90

4 Pedagogical Approach to SCHE courses

BMU SCHE Java Developer target the following categories of students:

 Bachelor degree holders with or without job, willing to change their profession
and job

 Master degree holders interested to learn Java programming, as they need for
their jobs

 Individuals that abandoned their bachelor studies and are seeking to get a
quick qualification of a Java Developer (in 12 months) and find a job as soon
as possible

 Fresh graduates from secondary schools not interested to get bachelor
degrees and planning to get a Java Developer job

Some of students may be employed and they cannot be full-time students following
F2F (face-to-face) courses. The same is the case with students not living in Belgrade
or Niš, towns where BMU has campuses. Therefore, BMU decided to implement
SCHE program providing (Figure 3.1):

 Online courses,

 F2F or online two days workshops at the end of each course, allowing
students to realize their project assignments, and

 An exam after each course and its workshop.

Figure 3.1: Three components of a SCHE Java Developer course

Instead of academic organization of courses (4-5 courses per semester realized in
parallel during 15 weeks), it is expected that a SCHE program may be more effective
if courses are sequentially thought, as shown in Figure 3.2. Exams should
demonstrated students’ ability to implement what they learnt. If they fail, they will
have one additional exam. If they fall again, they cannot proceed with the SCHE
program and must wait a new group of students of the SCHE Job Developer, and
continue their program with the course that didn’t pass.

Figure 3.2: Sequential implementation of courses of SCHE Java Developer

Students will be organized in groups of 20, having their own tutor (one per group).
Tutor will communicate with online students every days monitoring their work and
giving them consultations. Tutors will also check results of given assignments to
students and of their testing. Tutors will organize P2D or online workshops (for
those not being able to participate in F2F workshops), aiming the course projects.
Each student will get his project assignment that he must to complete by the end of
workshop and before the exam, planned for the next day.

 91

Figure 3.3 shows the organization of an online lesson. It consists of a number of
topics and sub-topics. A topic or sub-topic consist of one or more sections that
contain contents in form of multimedia web pages created by mDita Editor developed
by BMU.

Figure 3.3 : Organization of an online lesson with learning objects, related to topics
and sub-topics using sections of different kinds

An online lessons contains a number of learning objects with one or more sections.
Sections may provide now knowledge concepts, examples, assignments, tests,
video clips, forums or chats. First order learning objects (or LO) contains topic
sections or/and sub/topic sections. Each section is multimedia web page that
contains textual information, video and audio clips, listings of Java codes and
evaluation sections, such as different kind of tests and assignments. Authors of
courses organize online lessons as hierarchy of learning objects related to topics
and sub-topics. Online lessons, topics and subtopics are specified according to
knowledge units and topics defined in BOM (the Body of Knowledge) of the SCHE
Java Developer. Hours on online lessons are rough estimation of durations of online
lessons, but the focus is on lessons’ content, not in their durations.

Delivery of online lessons id managed by LAMS (Learning Activity Management
System). It was chosen as it supports the concepts of learning objects and learning
activities, organized in processes with branching. It is necessary for achieving a kind
of personalization of e-learning, as different learning content may be offered to
different students or group of students, based on their ability to learn and their
knowledge levels.

Figure 3.4 shows one section (web page) created by mDita editor.

 92

Figure 3.4: A section with learning content as shown to students by LAMS

The number of topics (first order LOs) may be different, depending of its content. The
same is valid for topics and their sub-topics and sections. So, a course may have
different number of lessons, with different number of learning objects for its topics,
sub-topics and sections.

When planning the duration of each course, it is assumed that student can use
online lessons provided by BMU e-Learning System, six day a week, and at least
three learning hours per day (reading or watching video clips and listening the
content of a lesson). Besides these three “learning hours”, it is expected that student
spend one or more hours for doing tests and assignments related to a topic.

