



Co-funded by the Erasmus+ Programme of the European Union

# D5.1 Curriculum development of the short cycle program JAVA DEVELOPER

| Project Acronym:                                                     | PT&SCHE                                                     |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------|--|--|--|
| Project full title:                                                  | Introduction of part-time and short-cycle studies in Serbia |  |  |  |
| Project No: 561655-EPP-1-2015-1-EE-EPPKA2-CBHE-SP(2015-3431/001-001) |                                                             |  |  |  |
| Funding Scheme:                                                      | ERASMUS+                                                    |  |  |  |
| Coordinator:                                                         | TLU – Tallinn University                                    |  |  |  |
| Project start date:                                                  | October 15, 2015                                            |  |  |  |
| Project duration:                                                    | 36 months                                                   |  |  |  |

| Abstract | This report provides the information on developed curriculum of the pilot<br>implementation of the online short-cycle in higher education (SCHE)<br>program JAVA DEVELOPER. Its aim is to provide the qualification of a<br>Java Developer after 12 months with 600 online and F2F hours of<br>education and training, It consists of 13 courses and a Internship lasting<br>two months. The students that successfully submit all assignments and<br>projects for 13 courses and complete it two months internship, is awared<br>with a Certificate.<br>As a pilot program, the curriculum and organization of the SCHE<br>program has been developed according to deliverables of<br><i>WP2. Development of legal frameworks for implementation for</i><br><i>PT&amp;SCHE</i> |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | PI&SCHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

## DOCUMENT CONTROL SHEET

| Title of Document:  | D5.1 Curriculum development of the short cycle program JAVA DEVELOPER |
|---------------------|-----------------------------------------------------------------------|
| Work Package:       | WP5. Pilot implementation of online PT & SCHE programs                |
| Last version date:  | 11/07/2017                                                            |
| Status :            | Draft                                                                 |
| Document Version:   | 1.0                                                                   |
| File Name           | Development of online SCHE JAVA DEVELOPER                             |
| Number of Pages     | 92                                                                    |
| Dissemination Level | Institutional                                                         |

## VERSIONING AND CONTRIBUTION HISTORY

| Version | Date      | Revision Description    | Responsible Partner |
|---------|-----------|-------------------------|---------------------|
| 0.9     | 1.5.2017  | Concept development     | Dragan Domazet, BMU |
| 1.0     | 11.7.2017 | Completed draft version | Dragan Domazet, BMU |
|         |           |                         |                     |
|         |           |                         |                     |
|         |           |                         |                     |
|         |           |                         |                     |
|         |           |                         |                     |

## TABLE OF CONTENT

| 1 | SPECIF  | ICATION OF THE ICT JOB PROFILE: DEVELOPER                                  | 4  |
|---|---------|----------------------------------------------------------------------------|----|
|   | 1.1 Rel | evant EU Policy Documents                                                  | 4  |
|   | 1.1.1   | European ICT Professional Profiles                                         | 4  |
|   | 1.1.2   | The European e-Competence Framework                                        | 7  |
|   | 1.2 The | e role and competences of a Developer                                      | 10 |
|   | 1.2.1   | The specification of the profile                                           |    |
|   | 1.2.2   | e-competences required                                                     | 11 |
|   | 1.3 The | e Body of Knowledge                                                        |    |
|   | 1.3.1   | The European Foundational ICT Body of Knowledge                            |    |
|   | 1.3.2   | The Body of Knowledge for Developer SCHE Programme                         | 26 |
| 2 |         | IORT CYCLE PROGRAMME FOR THE PROFILE ICT PROFESSIONAL                      | -  |
| D |         | ER                                                                         |    |
|   |         | anisation structure of a Short Cycle Program                               |    |
|   |         | ationships between e-competences and BMU e-courses                         |    |
|   | 2.2.1   | Acquiring the e-competence B.1. Design and Development (Level 3)           |    |
|   | 2.2.2   | Acquiring the e-competence B.2. System Integration (Level 2)               |    |
|   | 2.2.3   | Acquiring the e-competence B.3.Testing (Level 2)                           |    |
|   | 2.2.4   | Acquiring the e-competence B.5. Documentation Production (Level 3)         |    |
|   | 2.2.5   | Acquiring the e-competence C.4. Problem Management (Level 3)               |    |
|   | 2.2.6   | The List of BMU e-Courses Related to c-competences Specified for the ICT F |    |
|   |         | per                                                                        |    |
|   | 2.2.7   | Mapping of BMU Bachelor Courses into SCHE Java Developer Courses           |    |
| 3 |         | ES OF SCP JAVA DEVELOPER                                                   |    |
|   |         | uence of courses of SCHE Java Developer                                    |    |
|   | 3.2 Syl | labi of Programming Module Courses                                         |    |
|   | 3.2.1   | Course 1: Introduction to IT Systems                                       |    |
|   | 3.2.2   | Course 2: Programming Fundamentals                                         |    |
|   | 3.2.3   | Course 3: JAVA 1: Fundamentals of Programming                              |    |
|   | 3.2.4   | Course 4: Java 2: Object-oriented programming                              |    |
|   | 3.2.5   | Course 5: Java 3: GUI Programming                                          |    |
|   | 3.2.6   | Course 6: Java 4: Data Structures and Algorithms – Part A                  |    |
|   | 3.2.7   | Course 7: Java 5: Data Structures and Algorithms – Part B                  |    |
|   | 3.2.8   | Course 8: Java 6: Java ME                                                  |    |
|   | 3.2.9   | Course 9: Java 7: Advanced Java Programming                                |    |
|   | 3.2.10  | Course 10: Java 8: Java Enterprise Edition                                 |    |
|   | 3.2.11  | Course 11: Software Development Process and Methodologies                  | 79 |
|   | 3.2.12  | Course 12: Software Construction                                           |    |
|   | 3.2.13  | Course 13: Software Development Project                                    |    |
| 4 | Pedage  | ogical Approach to SCHE courses                                            | 90 |

## CURRICULUM DEVELOPMENT OF SCHE "JAVA DEVELOPER"

## 1 SPECIFICATION OF THE ICT JOB PROFILE: DEVELOPER

## **1.1 Relevant EU Policy Documents**

#### 1.1.1 European ICT Professional Profiles

"European ICT Professional Profiles", CWA 16458, is the second relevant document that is the CEN Workshop Agreement document (CEN stands for European Committee for Standardization). This Workshop Agreement has been endorsed by the National Members of CEN, but this is not t an official standard developed by CEN and its Members. The following paragraphs are the citations from this document:

"As a response to the huge number of ICT Profile Frameworks and Profile descriptions used today in European ICT Business and Qualification systems, it was decided to create a number of representative ICT Profiles covering, at their level of granularity, the full ICT Business process.

The profiles may be used for reference, or for the basis to develop further profile generations, by European stakeholders. Structured from six main **ICT Profile families**, these Profiles reflect the top of a **European ICT Profiles family tree** (Figure 1.1.). The concept devised is broadly analogous to human genetics where the genes of one generation pass down to the next. In the same way it is envisaged that the core components of the 23 Generation 2 Profiles will pass down to profiles constructed to meet specific stakeholder requirements. The 23 Profiles constructed in this CWA combined with e-competences from the e-CF, provide a gene pool for the development of tailored profiles that may be developed by European ICT sector players in specific contexts and with higher levels of granularity.

The 23 multi-stakeholders agreed that ICT Profile descriptions are based on the European e-Competence Framework (e-CF). European ICT Profiles and e-Competence are complementary concepts that can significantly support the development and management of a world class ICT professional community within Europe.

Applied at the same level of granularity as the e-CF, the European ICT Profiles provide generic skeletons of the most representative Profile prototypes currently used in ICT Business structures."



Figure 1.1 European ICT Profile Family Tree – Generation 1 and 2 as a shared European reference

"To add value, the European ICT Profiles must be adaptable to the employment environment. They are not useful if, on the contrary, the employer has to change practices to meet profile descriptions.

The European ICT Profile descriptions are therefore reduced to core components and constructed to clearly differentiate one from each other. Further context-specific elements can be added to the Profiles according to the specific environments in which the Profiles are to be integrated. Clause 4 explains how the European ICT Profiles can be used and adapted by any European stakeholder from a business, qualification or from a research perspective.

The 23 Profiles cover the full ICT Business process; positioning them into the e-CF Dimension 1 demonstrates this. Figure 1.2 below illustrates this together with the ICT Profiles family structure.

The European ICT Profiles build a consistent *bridge between existing competence and profile approaches*. In some European Countries, job **profile creation** is deployed as the traditional methodology for identifying and driving both organisational career paths and educational curriculum. Other countries deploy **a competence-oriented approach**, appreciating that the competence approach provides more flexibility.

In the European ICT Profiles development, the advantages of both approaches have been combined. The European ICT Profiles present e-Competences in an operational context. e-Competences provide the European ICT Profiles with core content in terms of capabilities needed to successfully perform a role. This provides the flexibility to make Profiles applicable EU-wide yet usable in a workplace environment.



Figure 1.2 European ICT Professional Profiles structured by six families and positioned within the ICT Business Process (e-CF Dimension 1)

By embedding e-Competence within ICT Profiles, which can be readily understood by experts or laymen, the European ICT Profile Family provides a universally applicable solution for communication between stakeholders with interests in ICT skills, knowledge and attitude development."

ICT Profiles are not totally isolated from each other. Those that interact with each other more closely, create a Profile Cluster. Figure 1.3 shows some of Profiles Clusters from the Design and Development Profile families.





## 1.1.2 The European e-Competence Framework

The CWA (CEN Workshop Agreement) document: "**The European e-Competence Framework (e-CF) version 3.0**" is the result of 8 years continuing effort and commitment by multi-stakeholders from the European ICT sector.

| Dimension 1<br>5 e-CF areas<br>(A – E) | Dimension 2<br>40 e-Competences identified     |     | sion 3<br>petence proficiency levels<br>-5, related to EQF levels 3–8 |     |     |     |
|----------------------------------------|------------------------------------------------|-----|-----------------------------------------------------------------------|-----|-----|-----|
|                                        |                                                | e-1 | e-2                                                                   | e-3 | e-4 | e-5 |
| A. PLAN                                | A.1. IS and Business Strategy Alignment        |     |                                                                       |     |     |     |
|                                        | A.2. Service Level Management                  |     |                                                                       |     |     |     |
|                                        | A.3. Business Plan Development                 |     |                                                                       |     |     |     |
|                                        | A.4. Product/Service Planning                  |     |                                                                       |     |     |     |
|                                        | A.5. Architecture Design                       |     |                                                                       |     |     |     |
|                                        | A.6. Application Design                        |     |                                                                       |     |     |     |
|                                        | A.7. Technology Trend Monitoring               |     |                                                                       |     |     |     |
|                                        | A.8. Sustainable Development                   |     |                                                                       |     |     |     |
|                                        | A.9. Innovating                                |     |                                                                       |     |     |     |
| B. BUILD                               | B.1. Application Development                   |     |                                                                       |     |     |     |
|                                        | B.2. Component Integration                     |     |                                                                       |     |     |     |
|                                        | B.3. Testing                                   |     |                                                                       |     |     |     |
|                                        | B.4. Solution Deployment                       |     |                                                                       |     |     |     |
|                                        | B.5. Documentation Production                  |     |                                                                       |     |     |     |
|                                        | B.6. Systems Engineering                       |     |                                                                       |     |     |     |
| C. RUN                                 | C.1. User Support                              |     |                                                                       |     |     |     |
|                                        | C.2. Change Support                            |     |                                                                       |     |     |     |
|                                        | C.3. Service Delivery                          |     |                                                                       |     |     |     |
|                                        | C.4. Problem Management                        |     |                                                                       |     |     |     |
| D. ENABLE                              | D.1. Information Security Strategy Development |     |                                                                       |     |     |     |
|                                        | D.2. ICT Quality Strategy Development          |     |                                                                       |     |     |     |
|                                        | D.3. Education and Training Provision          |     |                                                                       |     |     |     |
|                                        | D.4. Purchasing                                |     |                                                                       |     |     |     |
|                                        | D.5. Sales Proposal Development                |     |                                                                       |     |     |     |
|                                        | D.6. Channel Management                        |     |                                                                       |     |     |     |
|                                        | D.7. Sales Management                          |     |                                                                       |     |     |     |
|                                        | D.8. Contract Management                       |     |                                                                       |     |     |     |
|                                        | D.9. Personnel Development                     |     |                                                                       |     |     |     |
|                                        | D.10. Information and Knowledge Management     |     |                                                                       |     |     |     |
|                                        | D.11. Needs Identification                     |     |                                                                       |     |     |     |
|                                        | D.12. Digital Marketing                        |     |                                                                       |     |     |     |
| E. MANAGE                              | E.1. Forecast Development                      |     |                                                                       |     |     |     |
|                                        | E.2. Project and Portfolio Management          |     |                                                                       |     |     |     |
|                                        | E.3. Risk Management                           |     |                                                                       |     |     |     |
|                                        | E.4. Relationship Management                   |     |                                                                       |     |     |     |
|                                        | E.5. Process Improvement                       |     |                                                                       |     |     |     |
|                                        | E.6. ICT Quality Management                    |     |                                                                       |     |     |     |
|                                        | E.7. Business Change Management                |     |                                                                       |     |     |     |
|                                        | E.8. Information Security Management           |     |                                                                       |     |     |     |
|                                        | E.9. IS Governance                             |     |                                                                       |     |     |     |

Figure 1.4: 40 e-Competences defined by the European e-Competence Framework

The European e-Competence Framework (e-CF) version 3.0 provides a reference of 40 competences as required and applied at the Information and Communication Technology (ICT) workplace, using a common language for competences, skills and capability levels that can be understood across Europe. As the first sector-specific implementation of the European Qualifications Framework (EQF), the e-CF was created for application by ICT service, user and supply companies, for managers and human resource (HR) departments, for education institutions and training bodies including higher education, for market watchers and policy makers, and other organisations in public and private sectors.

"The e-CF supports the definition of jobs, training courses, qualifications, career paths, formal and non-formal learning paths, certifications etc. in the ICT sector. In this way, local, national, European and global ICT vendor and user companies as well as qualification and certification providers have access to a shared reference."

The European e-Competence Framework is structured from four dimensions (Figure 1.4). These dimensions reflect different levels of business and human resource planning requirements in addition to job / work proficiency guidelines and are

specified as follows:

**Dimension 1:** 5 e-Competence areas, derived from the ICT business processes PLAN – BUILD – RUN – ENABLE – MANAGE (see Figure 1.2)

**Dimension 2:** A set of reference e-Competences for each area, with a generic description for each competence. 40 competences identified in total provide the European generic reference definitions of the e-CF 3.0.

**Dimension 3:** Proficiency levels of each e-Competence provide European reference level specifications on e-Competence levels e-1 to e-5, which are related to the EQF levels 3 to 8. (Table 1.1)

**Dimension 4:** Samples of knowledge and skills relate to e-Competences in dimension 2. They are provided to add value and context and <u>are not intended to be exhaustive</u>.

Whilst competence definitions are explicitly assigned to dimension 2 and 3 and knowledge and skills samples appear in dimension 4 of the framework, attitude is embedded in all three dimensions.

Table 1.1.

| EQF<br>Levels | EQF                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e-CF<br>Levels | e-CF Levels descriptions                                                                                                                                                                                                                   | Typical<br>Tasks                          |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 8             | Knowledge at the most advanced frontier, the most<br>advanced and specialised skills and techniques tosolve<br>critical problems in research and/or innovation,<br>demonstrating substantial authority, innovation,<br>autonomy, scholarly or professional integrity.                                                                                                                                                                                                  | e-5            | <b>Principal</b><br>Overall accountability and<br>responsibility; recognised inside<br>and outside the organisation for<br>innovative solutions and for<br>shaping the future using<br>outstanding leading edge<br>thinking and knowledge. | IS strategy or<br>programme<br>management |
| 7             | Highly specialised knowledge, some of which is at the<br>forefront of knowledge in a field of work or study, as the<br>basis for original thinking, critical awareness of<br>knowledge issues in a field and at the interface between<br>different fields, specialised problem-solving skills in<br>research and/or innovation to develop new knowledge<br>and procedures and to integrate knowledge from<br>different fields, managing and transforming work or study | e-4            | Lead Professional / Senior<br>ManagerExtensivescopeExtensivescopeof<br>responsibilitiesdeploying<br>specialised integration<br>capability<br>in complex environments; fullresponsibilityforstrategic                                       | IS strategy/<br>holistic<br>solutions     |

| 6 | contexts that are complex, unpredictable and require<br>new strategic approaches, taking responsibility for<br>contributing to professional knowledge and practice<br>and/or for reviewing the strategic performance of teams<br>Advanced knowledge of a field of work or study,<br>involving a critical understanding of theories and<br>principles, advanced skills, demonstrating mastery and<br>innovation in solving complex and unpredictable<br>problems in a specialised field of work or study,<br>management of complex technical or professional<br>activities or projects, taking responsibility for decision-<br>making in unpredictable work or study contexts, for<br>continuing personal and group professional<br>development.                                                                                                                              | e-3 | development of staff working in<br>unfamiliar and unpredictable<br>situations<br>Senior Professional / Manager<br>Respected for innovative<br>methods and use of initiative in<br>specific technical or business<br>areas; providing leadership and<br>taking responsibility for team<br>performances and development<br>in unpredictabl environments.                  | Consulting                        |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 5 | Comprehensive, specialised, factual and theoretical knowledge within a field of work or study and an awareness of the boundaries of that knowledge, expertise in a comprehensive range of cognitive and practical skills in developing creative solutions to abstract problems, management and supervision in contexts where there is unpredictable change, reviewing and developing performance of self and others.<br>Factual and theoretical knowledge in broad contexts within a field of work or study, expertise in a range of cognitive and practical skills in generating solutions to specific problems in a field of work or study, self-management within the guidelines of work or study contexts that are usually predictable, but are subject to change, supervising the routine work of others, taking some responsibility for the evaluation and improvement | e-2 | <b>Professional</b><br>Operates with capability and<br>ndependence in specified<br>boundaries and may supervise<br>others in this environment;<br>conceptual and abstract model<br>building using creative thinking;<br>uses theoretical knowledge and<br>practical skills to solve complex<br>problems within a predictable<br>and sometimes unpredictable<br>context. | Concepts /<br>Basic<br>principles |
| 3 | of work or study activities.<br>Knowledge of facts, principles, processes and general<br>concepts, in a field of work or study, a range of cognitive<br>and practical skills in accomplishing tasks. Problem<br>solving with basic methods, tools, materials and<br>information, responsibility for completion of tasks in work<br>or study, adapting own behaviour to circumstances in<br>solving problems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e-1 | Associate<br>Able to apply knowledge and<br>skills to solve straight forward<br>problems; responsible for own<br>actions; operating in a stable<br>environment.                                                                                                                                                                                                         | Support /<br>Service              |

## **1.2** The role and competences of a Developer

## 1.2.1 The specification of the profile

### **ICT Profile Summary statement:**

Builds/codes ICT solutions and specifis ICT products according to the customer needs.

#### Alternative titles:

- Component Developer
- Application Developer
- Programmer

| Profile title     | DEVELOPER                                                                                |                                                                                                                                                                                                                                                        | (6)                                                                                                        |  |  |  |
|-------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|--|
| Summary statement | Builds/codes ICT soluti needs.                                                           | Builds/codes ICT solutions and specifies ICT products according to customer needs.                                                                                                                                                                     |                                                                                                            |  |  |  |
| Mission           | planning, low level des<br>writes code for operat                                        | Ensures building and implementing of ICT applications. Contributes to<br>planning, low level design. Compiles diagnostic programs and designs and<br>writes code for operating systems and software to ensure optimum<br>efficiency and functionality. |                                                                                                            |  |  |  |
| Deliverables      | Accountable                                                                              | Responsible                                                                                                                                                                                                                                            | Contributor                                                                                                |  |  |  |
|                   | <ul> <li>Hardware<br/>Component</li> <li>Software<br/>Component</li> </ul>               | Solution     Documentation                                                                                                                                                                                                                             | <ul> <li>Software Design<br/>Description</li> <li>Test Procedure</li> <li>Solution in Operation</li> </ul> |  |  |  |
| Main task/s       | <ul> <li>Engineer compone</li> <li>Shape documentat</li> <li>Provide componer</li> </ul> | <ul> <li>Engineer component</li> <li>Shape documentation</li> </ul>                                                                                                                                                                                    |                                                                                                            |  |  |  |
| e-competences     | B.1. Design and Develo                                                                   | B.1. Design and Development                                                                                                                                                                                                                            |                                                                                                            |  |  |  |
| (from e-CF)       | B.2. Systems Integration                                                                 | Level 2                                                                                                                                                                                                                                                |                                                                                                            |  |  |  |
|                   | B.3. Testing                                                                             | Level 2                                                                                                                                                                                                                                                |                                                                                                            |  |  |  |
|                   | B.5. Documentation Pr                                                                    | Level 3                                                                                                                                                                                                                                                |                                                                                                            |  |  |  |
|                   | C.4. Problem Managen                                                                     | Level 3                                                                                                                                                                                                                                                |                                                                                                            |  |  |  |
| KPI area          | Fully functional ICT cor                                                                 | mponents                                                                                                                                                                                                                                               |                                                                                                            |  |  |  |

Figure 1.5: Job profile specification of a Developer

## 1.2.2 e-competences required

A Developer must have the following e-competence specified jn the European e-Competence Framework 3.0:

- B.1. Design and Development (Level 3)
- B.2. System Integration (Level 2)
- B.3.Testing (Level 2)
- B.5. Documentation Production (Level 3)
- C.4. Problem Management (Level 3)

For each of these e-competences we cite its specification from the document European e-Competence Framework 3.0.

### **B.1. Design and Development (Level 3)**

| Dimension 1<br>e-Comp. area                                                       | B. BUILD                                                                                                                                                                                         | B. BUILD                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                             |                               |  |  |  |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------|--|--|--|
| Dimension 2<br>e-Competence:<br>Title + generic<br>description                    | Interprets the app<br>Adapts existing si<br>tests and docume<br>options for develo                                                                                                               | olutions by e.g. por<br>ents and communic<br>opment such as rec<br>ncy, cost and quality                                     | t<br>develop a suitable application in accordance<br>rting an application to another operating sy<br>cates product development stages. Selects a<br>using, improving or reconfiguration of existi<br>y. Validates results with user representatives                                | stern. Codes<br>ppropriate ti<br>ng compone | , debugs,<br>echnical<br>nts. |  |  |  |
| Dimension 3                                                                       | Level 1                                                                                                                                                                                          | Level 1 Level 2 Level 3 Level 4 Leve                                                                                         |                                                                                                                                                                                                                                                                                    |                                             |                               |  |  |  |
| e-Competence<br>proficiency levels<br>e-1 to e-5, related<br>to EQF levels 3 to 8 | Acts under<br>guidance to<br>develop, test<br>and document<br>applications.                                                                                                                      | Systematically<br>develops and<br>validates<br>applications.                                                                 | Acts creatively to develop applications<br>and to select appropriate technical<br>options. Accounts for others<br>development activities.<br>Optimizes application development,<br>maintenance and performance by<br>employing design patterns and by<br>reusing proved solutions. | -                                           | -                             |  |  |  |
| Dimension 4<br>Knowledge<br>examples<br>Knows/aware of/<br>familiar with          | K2 hardware or<br>K3 functional &<br>K4 state of the<br>K5 programmin<br>K6 Power cons<br>K7 DBMS<br>K8 operating S<br>K9 integrated of<br>K10 rapid applic<br>K11 IPR issues<br>K12 modeling te | k technical designin<br>art technologies<br>ng languages                                                                     | ind hardware architectures<br>ig<br>f software and/or hardware<br>re platforms<br>priment (IDE)<br>t (RAD)<br>guages                                                                                                                                                               |                                             |                               |  |  |  |
| Skills examples<br>Is able to                                                     | S2 perform an<br>S3 apply appro<br>S4 develop use<br>S5 manage an<br>S6 use data m<br>S7 perform an                                                                                              | d evaluate test resu<br>priate software an<br>ir interfaces, busine<br>d guarantee high le<br>odels<br>d evaluate test in th | design/development to the customer<br>ilts against product specifications<br>d/or hardware architectures<br>ess software components and embedded so<br>evels of cohesion and quality<br>he customer or target environment<br>eam and with application designers                    | ftware comp                                 | ponents                       |  |  |  |

Figure 1.6: Knowledge and skills needed for e-competence B.1. Application Development

| Dimension 1<br>e-Comp. area                                                       | B. BUILD                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |         |  |  |  |
|-----------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Dimension 2<br>e-Competence:<br>Title + generic<br>description                    | Integrates<br>with estal<br>maintena<br>integrity, : | B.2. Component Integration<br>ntegrates hardware, software or sub system components into an existing or a new system. Complies<br>with established processes and procedures such as, configuration management and package<br>maintenance. Takes into account the compatibility of existing and new modules to ensure system<br>ntegrity, system interoperability and information security. Verifies and tests system capacity and<br>performance and documentation of successful integration. |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |         |  |  |  |
| Dimension 3                                                                       | Level 1                                              | Level 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level 3                                                                                                                                                                                                                                 | Level 4                                                                                                                                                                                                                                                                             | Level 5 |  |  |  |
| e-Competence<br>proficiency levels<br>e-1 to e-5, related<br>to EQF levels 3 to 8 |                                                      | Acts systematically to<br>identify compatibility of<br>software and hardware<br>specifications.<br>Documents all activities<br>during installation and<br>records deviations and<br>remedial activities.                                                                                                                                                                                                                                                                                      | Accounts for own and<br>others actions in the<br>integration process.<br>Complies with<br>appropriate standards<br>and change control<br>procedures to maintain<br>integrity of the overall<br>system functionality and<br>reliability. | Exploits wide ranging<br>specialist knowledge to<br>create a process for the<br>entire integration cycle,<br>including the<br>establishment of<br>internal standards of<br>practice. Provides<br>leadership to marshal<br>and assign resources for<br>programmes of<br>integration. | -       |  |  |  |
| Dimension 4<br>Knowiedge<br>examples<br>Knows/aware of/<br>familiar with          | K2 the<br>K3 inter<br>K4 inter<br>K5 deve<br>revis   | impact that system integrat<br>facing techniques between<br>gration testing techniques                                                                                                                                                                                                                                                                                                                                                                                                        | components/software prog<br>on has on existing system/o<br>modules, systems and com<br>ment environment, manage                                                                                                                         | organisation<br>ponents                                                                                                                                                                                                                                                             | 14      |  |  |  |
| Skills examples<br>Is able to                                                     | S2 doct<br>S3 mat<br>S4 verif                        | <ul> <li>S1 measure system performance before, during and after system integration</li> <li>S2 document and record activities, problems and related repair activities</li> <li>S3 match customers' needs with existing products</li> <li>S4 verify that integrated systems capabilities and efficiency match specifications</li> </ul>                                                                                                                                                        |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |         |  |  |  |

| Figure 1.7: Knowledge and skills needed for e-competence B.2. Component |
|-------------------------------------------------------------------------|
| Integration                                                             |

## B.3.Testing (Level 2):

| Dimension 1<br>e-Comp. area                                                                               | B. BUILD                                                                                      |                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |         |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Dimension 2<br>e-Competence:<br>Title + generic<br>description                                            | requirements to e<br>components or sy<br>international stan                                   | stablish compliance wi<br>stems perform to expe<br>dards; including health                                                                                                 | procedures for ICT systems<br>th design specifications. En-<br>ctation. Ensures meeting of<br>and safety, usability, perfor<br>ence certification requireme                                                                                                                                                                          | sures that new or revised<br>internal, external, natio<br>mance, reliability or com                                                                                                                                                                        | nal and |  |  |  |
| Dimension 3                                                                                               | Level 1                                                                                       | Level 2                                                                                                                                                                    | Level 3                                                                                                                                                                                                                                                                                                                              | Level 4                                                                                                                                                                                                                                                    | Level 5 |  |  |  |
| e-Competence<br>proficiency levels<br>e-1 to e-5, related<br>to EQF levels 3 to 8                         | Performs simple<br>tests in strict<br>compliance with<br>detailed<br>instructions.            | Organises test<br>programmes and<br>builds scripts to<br>stress test potential<br>vulnerabilities.<br>Records and<br>reports outcomes<br>providing analysis<br>of results. | Exploits specialist<br>knowledge to supervise<br>complex testing<br>programmes. Ensures<br>tests and results are<br>documented to provide<br>input to subsequent<br>process owners such as<br>designers, users or<br>maintainers.<br>Accountable for<br>compliance with testing<br>procedures including a<br>documented audit trail. | Exploits wide –<br>ranging specialist<br>knowledge to create<br>a process for the<br>entire testing activity,<br>including the<br>establishment of<br>internal standard of<br>practices. Provides<br>expert guidance and<br>advice to the testing<br>team. |         |  |  |  |
| Dimension 4<br>Knowledge<br>examples<br>Knows/aware of/<br>familiar with<br>Skills examples<br>Is able to | K2 the lifecycle<br>K3 the different<br>K4 national and<br>K5 web, cloud a<br>S1 create and n | of a testing process<br>t sorts of tests (function<br>I international standard                                                                                             | s to be used in the testing p<br>nal, integration, performanc<br>is defining quality criteria fo<br>es and environmental requir                                                                                                                                                                                                      | e, usability, stress etc.)<br>r testing                                                                                                                                                                                                                    |         |  |  |  |
|                                                                                                           | S4 prepare and                                                                                | of ICT systems<br>conduct tests of ICT sy<br>locument tests and res                                                                                                        |                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |         |  |  |  |

Figure 1.8: Knowledge and skills needed for e-competence B.3. Testing

## **B.5. Documentation Production (Level 3):**

| Dimension 1<br>e-Comp. area                                                       | B. BUILD                                                        |                                                                                                                                                |                                                                                                                     |                           |         |  |  |  |  |  |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|---------|--|--|--|--|--|
| Dimension 2                                                                       | B.5. Documentation Production                                   |                                                                                                                                                |                                                                                                                     |                           |         |  |  |  |  |  |
| e-Competence:<br>Title + generic<br>description                                   | compliance with relev<br>presentation materials                 | describing products, services, co<br>rant documentation requirement<br>s. Creates templates for docum<br>s are documented in an approp<br>rte. | nts. Selects appropriate style<br>ent-management systems. I                                                         | and media<br>Ensures that | t       |  |  |  |  |  |
| Dimension 3                                                                       | Level 1                                                         | Level 2                                                                                                                                        | Level 3                                                                                                             | Level 4                   | Level 5 |  |  |  |  |  |
| e-Competence<br>proficiency levels<br>e-1 to e-5, related<br>to EQF levels 3 to 8 | Uses and applies<br>standards to define<br>document structure.  | Determines documentation<br>requirements taking into<br>account the purpose and<br>environment to which it<br>applies.                         | Adapts the level of<br>detail according to the<br>objective of the<br>documentation and the<br>targeted population. | -                         | -       |  |  |  |  |  |
| Dimension 4<br>Knowledge<br>examples<br>Knows/aware of/<br>familiar with          | K2 tools for multim<br>K3 different technic<br>applications and | tion, editing and distribution of<br>edia presentation creation<br>al documents required for design<br>services<br>of documentation production |                                                                                                                     | oying produ               | icts,   |  |  |  |  |  |
| Skills examples<br>Is able to                                                     | S2 prepare template<br>S3 organise and con                      | oloy effective use of corporate s<br>es for shared publications<br>ntrol content management wor<br>is aligned to the solution during           | rkflow                                                                                                              |                           |         |  |  |  |  |  |

## Figure 1.9: Knowledge and skills needed for e-competence B.5. Document Production

## C.4. Problem Management (Level 3):

| Dimension 1<br>e-Comp. area                                                                 | C. RUN                                       |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Dimension 2<br>e-Competence:<br>Title + generic<br>description                              | Identifies<br>identifica                     | tion of root cause of I                                                                                                                                | nt<br>cause of incidents. Takes a pro<br>CT problems. Deploys a knowl<br>calates incidents. Optimises sys                                                                                                                                                                                                                                                                                                                                     | edge system based on recurren                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nce of  |  |  |  |
| Dimension 3                                                                                 | Level 1                                      | Level 2                                                                                                                                                | Level 3                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level 5 |  |  |  |
| e-Competence<br>proficiency levels<br>e-1 to e-5, related<br>to EQF levels 3 to 8           | -                                            | Identifies and<br>classifies incident<br>types and service<br>interruptions.<br>Records incidents<br>cataloguing them<br>by symptom and<br>resolution. | Exploits specialist<br>knowledge and in-depth<br>understanding of the ICT<br>infrastructure and problem<br>management process to<br>identify failures and resolve<br>with minimum outage.<br>Makes sound decisions in<br>emotionally charged<br>environments on<br>appropriate action required<br>to minimise business<br>impact. Rapidly identifies<br>failing component, selects<br>alternatives such as repair,<br>replace or reconfigure. | Provides leadership and is<br>accountable for the entire<br>problem management<br>process. Schedules and<br>ensures well trained<br>human resources, tools,<br>and diagnostic equipment<br>are available to meet<br>emergency incidents. Has<br>depth of expertise to<br>anticipate critical<br>component failure and<br>make provision for<br>recovery with minimum<br>downtime. Constructs<br>escalation processes to<br>ensure that appropriate<br>resources can be applied to<br>each incident. |         |  |  |  |
| Dimension 4<br>Knowledge<br>examples<br>Knows/aware of/<br>familiar with<br>Skills examples | K2 the<br>K3 the<br>K4 the<br>K5 the<br>prot | organisation's reporti<br>organisation's critical<br>application and availa<br>link between system i<br>cesses.                                        | ICT infrastructure and key com<br>ng procedures<br>situation escalation procedures<br>ibility of diagnostic tools<br>infrastructure elements and imp<br>s throughout lifecycle and com                                                                                                                                                                                                                                                        | pact of failure on related busin                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ess     |  |  |  |
| is able to                                                                                  | S2 ider<br>S3 con<br>S4 allo<br>S5 corr      | tify potential critical o<br>duct risk managemen<br>cate appropriate reso                                                                              | s throughout necycle and com<br>component failures and take ac<br>t audits and act to minimise ex<br>urces to maintenance activities,<br>to ensure appropriate resource                                                                                                                                                                                                                                                                       | tion to mitigate effects of failu<br>posures<br>balancing cost and risk                                                                                                                                                                                                                                                                                                                                                                                                                             |         |  |  |  |

## Figure 1.10: Knowledge and skills needed for e-competence B.5. Problem Management

## **1.3 The Body of Knowledge**

Specification of knowledge units and skills provided for each e-competence in the previous section is not enough to specify the curriculum for a short cycle program for a profile. The specifies required knowledge and skills are of very high level and need to be specified at lower levels. This is the mission of a Body of Knowledge of a study program. In our case we can use:

- The Foundation ICT Body of Knowledge, Version 1, 22 February 2015, a report prepared for the European Commission, DG Internal Market, Industry, Entrepreneurship and SMEs by the Service Contract: e-Skills: Promotion of ICT Professionalism in Europe | No 290/PP/ENT/CIP/13/C/N01C011 prepared by Capgemini Consulting and Ernst & Young.
- The Software Engineering Body of Knowledge SWEBOK 3.0, specified by the IEEE Computer Society - see P. Bourque and R.E. Fairley, eds., Guide to the Software Engineering Body of Knowledge, Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

## 1.3.1 The European Foundational ICT Body of Knowledge

The European Foundational ICT Body of Knowledge is the base-level knowledge required to enter the ICT profession and acts as the first point of reference for anyone interested in working in ICT'.

The ultimate objective is to create a recognised and supported Foundational ICT Body of Knowledge that:

- Serves as an entry point to get into ICT for anyone contemplating a career in ICT and entering from other professions or wanting to digitise their current job;
- Facilitates communication between and understanding of ICT professionals in Europe in whatever sector they are active, thereby reducing risks and strengthening ICT professionalism;
- Increases the supply and pool of ICT professionals and enhances the image of ICT.

The definition of an ICT Professional is defined, as someone who should:

- Possess a comprehensive and up-to-date understanding of a relevant body of knowledge;
- Demonstrate on-going commitment to professional development via an appropriate combination of qualifications, certifications, work experience, nonformal and / or informal education;
- Adhere to an agreed code of ethics / conduct and / or applicable regulatory practices; and
- Through competent practice deliver value for stakeholders.

Some of the key challenges for the near future are to:

- Ensure that as many ICT professionals as possible have the necessary relevant knowledge, skills and competence to deliver professional products and service in today's digital economy;
- Improve the quality of the ICT profession;
- Close the ICT resource and skills gap;
- Enhance growth in digital jobs in Europe;

Improve general ICT knowledge among professionals in other fields of expertise.

The nature of ICT jobs is also changing. It is no longer enough to merely be a technical expert. The industry needs professionals with a diversity of ICT knowledge and skillsx. ICT professionals are also required to understand the business, operational and HR management aspects. Industry is looking for multidisciplinary ICT professionals, dual thinkers (i.e. people who have a good understanding of both business and Technology) or T-shaped persons (see below). ICT is no longer a back office support tool or one department within a company but permeates all the layers and units of a company. ICT has moved itself to the forefront and become a key strategic asset in everyday (professional) life. Therefore, it is no longer sufficient only to have knowledge of one specific ICT domain.

The need for a broad IT systems viewpoint is essential, with the ability to understand the possibilities and constraints of the various technologies and to talk a common language with the diversity of people involved. This was expressed as a concept for the first time by David Guest in 1991xi through the use of the T-shape metaphor, which has been widely adopted since (Figure 1.11).



Figure 1.11 Shaped Skills Model

The vertical line of the T represents the depth of related skills and expertise in a single field, whereas the horizontal bar is the ability to collaborate across disciplines with experts in other areas and to apply knowledge in areas of expertise other than one's own. This model thus differs from another classic type: "I-shaped" – with a deep understanding of one specific discipline, but not necessarily of any other. In the

current ICT environment, employers find themselves trying to do a "T" job with "I" people.

However, a professional who combines specialisation in a specific ICT domain with relevant breadth of ICT knowledge is more easily employable and has a competitive position on the market. Given that there has in the past been a particular focus on depth, it is necessary to look more closely at the issue of breadth of knowledge. It is all a matter of creating the right balance between the two.

The objective is to create T-shaped persons with as much as possible the same elements in the horizontal bar. All ICT professionals should have the same DNA. It is however often the case that ICT professionals have much in common, but have different (job) profiles. The objective of a Body of Knowledge (BOK) is to define the 'chromosomes', or building blocks of the horizontal bar, in the ICT field and act as a guide to the breadth of ICT knowledge required.

The EU Foundational ICT Body of Knowledge thus aims to provide guidance for individuals, academia and industry, and hence contribute to developing tomorrow's multidisciplinary ICT professionals.

The structure of the Foundational ICT Body of Knowledge could be described as an 'inverted T-model', in which the horizontal axis shows the knowledge areas of the ICT domain running from a predominantly strategic to a predominantly technological perspective. The vertical axis corresponds to specific knowledge and skills an individual should develop to specialise in one domain. We can assume that any ICT professional wanting to go into a field different from that of their existing specialisation should come down to the horizontal bar (the base-level) and find a connection to other knowledge areas in order to expand their breadth of knowledge.

The Foundational ICT Body of Knowledge provides the base-level knowledge that ICT professionals require. However, considering the wide range of knowledge in the ICT field, it has to be intended as a "permissive model" where every ICT professional will acquire as much breadth as possible in terms of knowledge

In addition to the dimension of ICT core knowledge defined above, the European Foundational ICT Body of Knowledge consists of a second dimension of complementary base-level knowledge required to enter the ICT profession. This dimension includes cross-cutting knowledge that cannot be considered purely in relation to one ICT knowledge area but can be referred to, at different levels, in relation to all core knowledge areas, i.e.:

- Legal, ethical, social and professional practices: including this knowledge in the Foundational ICT Body of Knowledge serves to provide key reference points for everyone interested in the ICT profession, as they are strongly linked to the definition of the ICT profession itself. Legal, ethical, social and professional practices need to be addressed at different levels at different stages of professional development. Thevery nature of professional work means that some knowledge and skills are best developed through experience and that an understanding of complex issues, such as ethics, grows with maturity. Further development will be provided at a full professional level through participation in certification programmes.
- Soft skills: including soft skills in the Foundational ICT Body of Knowledge provides a concrete contribution to the evolution of the ICT profession. Soft skills integrate the technical skills, providing a sound basis for developing

"dual thinker" profiles, which are oriented towards team building, collaboration, negotiation, e-leadership, etc.

Emerging / disruptive technologies: given the fast growth in the disruptive technologies of cloud, mobile, social and big data, which are predicted to constitute 40% of the global market and 98% of growth by 2020, and the expected creation of 4.4 million IT jobs globally to support big data – base-level knowledge should be provided to improve an understanding of these technologies and their impacts on business and society.

The BOK illustrated below (Figure 1.12) and expanded on in the following sections presents the taxonomy of **the high-level areas of knowledge** that represent the base level that starting ICT professionals should understand. These knowledge areas are then broken down and described in further detail, including with a general definition of the knowledge area, a detailed list foundational knowledge, reference to the e-CF, potential job profiles and examples of specific Bodies of Knowledge, certification and training opportunities.



Figure 1.12: Taxonomy of Foundational ICT Body of Knowledge

This Body of Knowledge aims to develop the next generation of ICT professionals, e.g. young, rounded ICT professionals with a significant breadth of base-level knowledge of ICT that allows them to further specialize within a particular discipline.

This Version 1.0 of the European Foundational ICT Body of Knowledge presents the taxonomy of high-level areas of knowledge that represent the base level starting ICT professionals should understand.

The following section presents 12 Knowledge Areas:

- 1. ICT Strategy & Governance
- 2. Business and Market of ICT
- 3. Project Management
- 4. Security Management
- 5. Quality Management
- 6. Architecture
- 7. Data and Information Management
- 8. Network and Systems Integration
- 9. Software Design and Development
- 10. Human Computer Interaction

- 11. Testing
- 12. Operations and Service Management.

#### Each Knowledge Area is further detailed, including a:

- 1. Definition of the Knowledge Area;
- 2. List of items required as foundational knowledge necessary under this Knowledge Area;
- 3. List of references to the e-Competence Framework (dimension 4: knowledge);
- 4. List of possible job profiles that require having an understanding of the Knowledge Area;
- 5. List of examples of specific Bodies of Knowledge, certification and training possibilities.

Figures 1.13-1.116 summarize the content of few Knowledge Areas, the most relevant for the profile Developer:

- Software Design and Development
- Human Computer Interaction
- Data and Information Management
- Testing

These Knowledge Areas provide broader knowledge then needed for the Developer profile, as it is related only to a part of one of five (Build) phases of the ICT Business Process, as shown in Figure 1.2 earlier.

## Software Design and Development

This is about is the application of engineering to the design, development, and maintenance of software<sup>xxxi</sup>. It is necessary to understand how to develop or acquire software (information) systems that satisfy the requirements of users and customers. Knowledge of methodologies and processes for developing systems is also needed<sup>xxxii</sup>.

#### a) Foundational knowledge required

- Software elements of a computer system
- Software architecture
- Object-oriented design
- User interface design
- Software design process
- Concept of developing requirements (including types and analysis techniques)
- Programming languages and protocols
- Iterative software development
- Concept of system integration

#### b) e-Competence Framework references

- A6 Application Design
- B1 Application Development
- B2 Component Integration
- B4 Solution Deployment
- B6 Systems Engineering
- C1 User Support

#### c) Examples of Job profiles envisioned

- Systems Analyst
- Systems Architect
- Developer
- Test Specialist
- Systems Administrator
- Network Specialist

#### d) Examples of specific Bodies of Knowledge, certification and training possibilities

- SWEBOK v3.0 (Software Engineering Body of Knowledge IEEE Computer Society)
- IEEE Certified Software Development Professional
- CompTIA (Computing Technology Industry & Association)
- Vendor certifications (Microsoft, Cisco, IBM, etc.)
- OMG Certified UML<sup>®</sup> Professional (OCUP)
- Application Services Library (ASL)
- OPEN CITS (Open Group Certified IT Specialist)

Figure 1.13: Software Design and Development Knowledge Area

#### **Human-Computer Interaction**

Human–computer interaction (HCI) as defined by the Association for Computing Machinery (ACM) is "a discipline concerned with the design, evaluation and implementation of interactive computing systems for human use and with the study of major phenomena surrounding them". It requires an understanding of the importance of the user in developing ICT applications and systems, and involves developing a mindset that recognises the importance of users, their work practices and organisational contexts. Topics covered could include user-centred design methodologies, interaction design, ergonomics, accessibility standards and cognitive psychology<sup>xxxiii</sup>.

#### a) Foundational knowledge required

- Models and theories of human-computer interaction (HCI)
- Interaction design basics
- HCI in the software process
- Modelling rich interaction
- Groupware, ubiquitous computing and augmented realities
- Hypertext, multimedia, and the world wide web

#### b) e-Competence Framework references

- A5 Architecture design
- A6 Application design
- A9 Innovating
- B1 Application development
- B2 Component integration
- D11 Needs identification

#### c) Examples of Job profiles envisioned

- System Architect
- Developer
- Digital Media Specialist
- Test Specialist
- Network Specialist
- d) Examples of specific Bodies of Knowledge, certification and training possibilities
  - Usability Body of Knowledge (http://www.usabilitybok.org/)

#### Figure 1.14: Human-Computer Interaction Knowledge Area

#### Testing

Software testing is an investigation conducted to provide stakeholders with information about the quality of the product or service under test<sup>xxxiv</sup>. Software testing can also provide an objective, independent view of the software to allow the business to appreciate and understand the risks of software implementation<sup>xxxv</sup>. Test techniques include, but are not limited to, the process of executing a programme or application with the intent of finding software bugs (errors or other defects)<sup>xxxvi</sup>. Or software component.

#### a) Foundational knowledge required

- Definition and concepts of structured testing
- Testing principles
- Testing types, methods & techniques
- Life cycle testing

#### b) e-Competence Framework references

- B2 Component Integration
- B3 Testing
- B4 Solution Deployment
- E8 Information Security Management

#### c) Examples of Job profiles envisioned

- Developer
- Test Specialist
- Systems Administrator
- Digital Media Specialist

#### d) Examples of specific Bodies of Knowledge, certification and training possibilities

- OPENCITS (Open Group Certified IT Specialist)
- ISTQB (International Software Testing Qualifications Board )()
- TMAP (Test Management Approach) ()

#### Figure 1.15: Testing Knowledge Area

#### **Data and Information Management**

Data management is the development, execution and supervision of plans, policies, programmes and practices that control, protect, deliver and enhance the value of data and information assets<sup>xxvii</sup>. An understanding is required of how data is captured, represented, organised and retrieved from computer files and databases<sup>xxviii</sup>.

#### a) Foundational knowledge required

- Information and data modelling
- Physical file storage techniques
- Database management systems (DBMS)
- Document, records and content management
- Reference and master data management
- Integrated data management

#### b) e-Competence Framework references

- A6 Application Design
- B1 Application Development
- B6 Systems Engineering
- C1 User Support
- D10 Information and Knowledge Management

#### c) Examples of Job profiles envisioned

- Business Information Manager
- Systems Architect
- Developer
- Test Specialist
- Database Administrator
- Systems Administrator
- Network Specialist

#### d) Examples of specific Bodies of Knowledge, certification and training possibilities

- DAMA-DMBOK (Data Management BOK DAMA International).
- Software Engineering Institute (SEI) Certification

#### Figure 1.16: Data and Information Management Knowledge Area

As specified earlier, five ICT e-competences are required for the profile Developer:

- B.1. Design and Development (Level 3)
- B.2. System Integration (Level 2)
- B.3.Testing (Level 2)
- B.5. Documentation Production (Level 3)
- C.4. Problem Management (Level 3)

Figure 1.17 shows relationships of these five e-competences and 10 Knowledge Areas of the ICT Foundation Body of Knowledge. It does nit mean the profile Developer must know everything specified in these 10 Knowledge Areas. In so

me of them it is almost true, but in most of other Knowledge Areas is not the case, as only a small portion of the Knowledge Area is needed. It will be the task of curriculum development to be more specific and specify lower level knowledge units and skills.

|                                                         |                                     |                          |                          |                           |                     |                    |                             |                           |             |                         |                       |         |                     |                    |              |                |                  | e-Of               | :                                      |                                  |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         |                       |                        |                           |                                 |               |
|---------------------------------------------------------|-------------------------------------|--------------------------|--------------------------|---------------------------|---------------------|--------------------|-----------------------------|---------------------------|-------------|-------------------------|-----------------------|---------|---------------------|--------------------|--------------|----------------|------------------|--------------------|----------------------------------------|----------------------------------|--------------------|------------------|---------------------|------------------------|---------------------------------------|-----------------------|--------------------|----------------------------------|-----------------|-------------------------|-----------------------|------------------------|---------------------------|---------------------------------|---------------|
| KNOWLEDGE AREAS                                         | IS and Busin ass Strategy Aign ment | Service Level Management | Business Ran Development | Product/ Service Planning | Architecture Design | Application Design | Technology Trend Monitoring | Sustainable Devido prnent | Innov sting | Application Development | Component integration | Testing | Solution Deployment | System angineering | U ær support | Change support | Service Delivery | Problem Management | would on An Alban as Auroos un tempora | ICT quality strategy development | Channel Management | Sales Management | Contract Management | P assonneld evelopment | information and knowledge man agement | N eeds identification | Digital mark oting | Project and Portfolio Management | Rick Managoment | Relationship Management | P rocess imp rovement | ICT Quality Management | Business ChangeManagement | information Security Management | 5 Governan ce |
| ICT Strategy & Governance                               | x                                   |                          | x                        |                           |                     |                    |                             |                           |             |                         |                       |         |                     |                    |              |                |                  | ×                  |                                        |                                  |                    |                  |                     |                        |                                       |                       |                    | ×                                | ×               |                         |                       |                        | x                         |                                 | x             |
| Business and Market of ICT                              |                                     |                          | x                        |                           |                     |                    | ×                           |                           | x           |                         |                       |         |                     |                    |              |                |                  |                    |                                        |                                  | ×                  | x                |                     |                        |                                       | ×                     | x                  |                                  |                 |                         |                       |                        | x                         |                                 |               |
| Project Management                                      |                                     |                          |                          | x                         |                     |                    |                             |                           |             | Γ                       |                       |         | Γ                   |                    |              |                |                  | x                  | Γ                                      | Γ                                |                    |                  |                     |                        |                                       |                       |                    | ×                                |                 |                         |                       |                        |                           |                                 | $\square$     |
| Security Management                                     |                                     |                          |                          |                           |                     |                    |                             |                           |             | x                       |                       |         |                     | x                  |              | x              | x                |                    | x                                      |                                  |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         |                       |                        |                           | x                               | $\square$     |
| Quality Management                                      |                                     | ×                        |                          |                           |                     |                    |                             |                           |             |                         |                       |         |                     |                    |              |                |                  |                    |                                        | x                                |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         | ×                     | x                      |                           |                                 |               |
| Architecture                                            | x                                   |                          |                          | Γ                         | x                   | x                  |                             |                           |             | x                       |                       |         | Γ                   | x                  |              |                |                  |                    | Γ                                      | Γ                                |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         |                       |                        | $\square$                 |                                 | $\square$     |
| Data and Information<br>Management                      |                                     |                          |                          | Γ                         |                     | x                  |                             |                           |             | x                       |                       |         | Γ                   | x                  | x            |                |                  |                    | Γ                                      | Γ                                |                    |                  |                     |                        | x                                     |                       |                    |                                  |                 |                         |                       |                        |                           |                                 | $\square$     |
| Network and Systems<br>Integration                      | x                                   |                          |                          |                           |                     |                    | x                           |                           |             | x                       | x                     |         | x                   | x                  |              |                |                  |                    |                                        |                                  |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         |                       |                        |                           |                                 |               |
| Software Design and<br>Development                      |                                     |                          |                          |                           |                     | x                  |                             |                           |             | x                       | x                     |         | x                   | x                  | ×            |                |                  |                    |                                        |                                  |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         |                       |                        |                           |                                 |               |
| Human Computer Interaction                              |                                     |                          |                          |                           | ×                   | x                  |                             |                           | x           | ×                       | x                     |         |                     |                    |              |                |                  |                    |                                        |                                  |                    |                  |                     |                        |                                       | ×                     |                    |                                  |                 |                         |                       |                        |                           |                                 |               |
| Testing                                                 |                                     |                          |                          |                           |                     |                    |                             |                           |             |                         | x                     | x       | x                   |                    |              |                |                  |                    |                                        |                                  |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         |                       |                        |                           | ×                               |               |
| Operations and Service<br>Management                    |                                     | ×                        |                          | ×                         |                     |                    |                             |                           |             |                         |                       |         |                     |                    |              |                | x                | ×                  | ×                                      | x                                |                    |                  | x                   |                        |                                       | ×                     |                    |                                  |                 |                         |                       |                        |                           |                                 |               |
| Soft Skills                                             |                                     |                          |                          |                           |                     |                    |                             |                           |             |                         |                       |         |                     |                    |              |                |                  |                    |                                        |                                  |                    |                  |                     | x                      |                                       |                       |                    |                                  |                 | x                       |                       |                        |                           |                                 |               |
| IT Legal, Ethical, Social and<br>Professional practices | x                                   |                          |                          |                           |                     |                    |                             | x                         |             |                         |                       |         |                     |                    |              |                |                  |                    |                                        |                                  |                    |                  | x                   |                        | x                                     |                       | x                  |                                  |                 |                         |                       |                        |                           |                                 |               |
| Disruptive Technologies                                 | x                                   |                          |                          |                           |                     |                    | ×                           |                           | x           |                         |                       |         |                     |                    |              |                |                  |                    |                                        |                                  |                    |                  |                     |                        |                                       |                       |                    |                                  |                 |                         |                       |                        |                           |                                 |               |

Figure 1.17: Relationships between Developer's e-competences and Knowledge Areas of the ICT Foundation Body of Knowledge

More specific, four Knowledge Areas of the profile Developer are shown in Figure 1.18 that shows relationships of the European ICT Professional Profiles and Knowledge Areas of the ICT Foundation Body of Knowledge.

|                                   |                           | ICT JOB PROFILES             |                        |                           |                      |                 |                 |                  |                 |                       |                   |           |                          |                 |                        |                       |                    |                      |                    |                 |                |                         |
|-----------------------------------|---------------------------|------------------------------|------------------------|---------------------------|----------------------|-----------------|-----------------|------------------|-----------------|-----------------------|-------------------|-----------|--------------------------|-----------------|------------------------|-----------------------|--------------------|----------------------|--------------------|-----------------|----------------|-------------------------|
| KNOWLEDGE AREAS                   | Chief Information Officer | Business Information Manager | ICT Operations Manager | Quality Assurance Manager | ICT Security Manager | Project Manager | Service Manager | Business Analyst | Systems Analyst | Enter prise Architect | Systems Architect | Developer | Digital Media Specialist | Test Specialist | Database Administrator | Systems Administrator | Network Specialist | Technical Specialist | Service Desk Agent | Account Manager | ICT Consultant | ICT Security Specialist |
| ICT Strategy & Governance         | х                         | х                            |                        |                           |                      |                 |                 | х                |                 |                       |                   |           |                          |                 |                        |                       |                    |                      |                    |                 | х              |                         |
| Business and Market of ICT        |                           | х                            |                        |                           |                      | х               |                 | х                |                 | х                     |                   |           |                          |                 |                        |                       |                    |                      |                    | х               | х              |                         |
| Project Management                | х                         |                              | х                      |                           |                      | х               |                 |                  |                 |                       |                   |           |                          |                 |                        |                       |                    |                      |                    |                 |                |                         |
| Security Management               |                           |                              | х                      |                           | х                    |                 |                 |                  |                 |                       |                   |           |                          |                 |                        | х                     |                    |                      |                    |                 |                | х                       |
| Quality Management                |                           |                              | х                      | х                         |                      |                 | х               |                  |                 |                       |                   |           |                          |                 |                        |                       |                    |                      |                    |                 |                |                         |
| Architecture                      |                           | х                            |                        |                           |                      |                 |                 |                  | х               | х                     | х                 |           |                          |                 |                        |                       |                    |                      |                    |                 |                |                         |
| Data and Information Management   |                           | х                            |                        |                           |                      |                 |                 |                  |                 |                       | х                 | х         |                          | х               | х                      | х                     | х                  |                      |                    |                 |                |                         |
| Network and Systems Integration   |                           |                              |                        |                           |                      |                 |                 |                  |                 |                       |                   |           | х                        |                 |                        |                       | х                  |                      |                    |                 | х              |                         |
| Software Design and Development   |                           |                              |                        |                           |                      |                 |                 |                  | х               |                       | х                 | х         |                          | х               | Х                      | х                     | х                  |                      |                    |                 |                |                         |
| Human Computer Interaction        |                           |                              |                        |                           |                      |                 |                 |                  |                 |                       | х                 | х         | х                        | х               |                        |                       | х                  |                      |                    |                 |                |                         |
| Testing                           |                           |                              |                        |                           |                      |                 |                 |                  |                 |                       |                   | х         | х                        | х               |                        | х                     |                    |                      |                    |                 |                |                         |
| Operations and Service Management |                           |                              | х                      |                           |                      | ×               | x               |                  |                 |                       |                   |           |                          |                 |                        |                       | х                  | х                    | х                  | х               |                |                         |

Figure 1.19: Relationships between ICT Job Profiles and Knowledge Areas of the ICT Foundation Body of Knowledge

Unfortunately, the ICT Foundation Body of Knowledge does not provide yet lower levels of knowledge and it is not sufficient for a curriculum development. Therefore, additional extensions (sub-topics) of the Bodies of Knowledge are needed.

## 1.3.2 The Body of Knowledge for Developer SCHE Programme

IEEE Computer Society specified two Bodies of Knowledge (BOK) that are relevant for ICT Profile Developer:

- Computer Science Curricula 2013 Curriculum Guidelines for Undergraduate Degree Programs in Computer Science, December 20, 2013, The Joint Task Force on Computing Curricula of Association for Computing Machinery (ACM) and IEEE Computer Society
- SWEBOK 3.0 Guide to the Software Engineering Body of Knowledge, Editors Pierre Bourque, École de technologie supérieure (ÉTS) and Richard E. (Dick) Fairley, Software and Systems Engineering Associates (S2EA), IEEE Computer Society

Knowledge areas and topics from these two Bodies of Knowledge are to be selected according to specified of Knowledge Areas and e-competences required for ICT Profile Developer specified in previous sections.

Figure 1.1 showed European ICT Profile Family Tree with Generation 1 and 2 of ICT Profiles. 23 in total). As this SCHE Programme aims to educate and train Java

Developers, i.e. developers of applications written in Java, we will create a **Generation 3 ICT Profile – Java Developer**. We have to provide all competences specified for ICT Profile Developer specified in previous sections, but extended with specific competences of Java Developers.

## 2 THE SHORT CYCLE PROGRAMME FOR THE PROFILE ICT JAVA DEVELOPER

## 2.1 Organisation structure of a Short Cycle Program

In order to develop the required competences of a ICT Profile, such as Developer, a learner must learn all knowledge units (such as topics and sub-topics of a Knowledge Area) specified for the Profile and develop necessary skills. A course is the basic set of knowledge and skills that a student must verify that he or she acquired the specified knowledge and skills by passing an exam. To acquire all competences required, a student must complete a number of courses by passing their exams. The granularity of courses my be different and smaller courses are usually preferable, as student can easier complete their assignment specified by their syllabi and pass their exams.

In some cases courses are inter-related and can be grouped in modules. A short cycle program may have any number of courses and modules. Figure 2.1 shows the general structure of a short cycle program.



Figure 2.1: A typical organization structure of a Short Cycle Program

A Short Cycle Program must provide students with the required competences and must qualify them for the specified job. In our case here, the job is the job of a **Java Developer**, specified in the previous chapter. The Short Cycle Courses will be defined in groups (Modules) related to the specific e-competences listed for the ICT Profile **Developer**. Each Short Course contains a number of Lessons created by Learning Objects (LO). BMU is using LO of fine granularity needed for personalized

e-learning (BMU is strategically oriented to develop and implement personalized elearning). Small size LOs support LO reusability among different courses.

As shown in Figure 2.1, BMU offers three levels of Certificates:

- 1. Course Certificate for all students that pass the final exams of a course.
- 2. *Module Certificate* for all students that pass the final exams of a all course of a Module planned for a SC Program.
- 3. *Programme Certificate* for all students that pass the final exams of all modules of a SC course.

If a Short Cycle Programme does no contain modules, it provides only two certificates: *Course Certificate* and *Programme Certificate* (Figure 2.2)



Figure 2.2: A Short-Cycle Programme without modules

Having in mind Figures 1.5 – 1.10, Figure 2.3 was created. It relates e-competence levels (e-2 and e-3) with EQF levels (5 and 6) with five required e-competences (B1, B2, B3, B5 and C4) for a ICT job profile JAVA DEVELOPER, as a 3<sup>rd</sup> level specialization of ICT job profile DEVELOPER. The difference is that all e-competences must be implemented with Java technology. The job profile short description, mission, and main tasks are the same as for the ICT job profile DEVELOPER.

Depending of the achieved e-competence level (e-2 or e-3) and EQF level (5 or 6), a SCHE program may educate and train a Java Junior Developer or a Java Developer (Figure 2.4). The pilot implementation od the SCHE JAVA DEVELOPER is developed for Java Developer level (e-3 and EQF level 6).



Figure 2.3: ICT job profile description for Java Junior Developer and Java Developer



Figure 2.4: Positioning of Java Junior Developer and Java Developer SCHE programs in relation to EQF levels and e-Competence proficiency levels

### 2.2 Relationships between e-competences and BMU e-courses

At this stage we need to identify the existing BMU e-courses that can be used in Short Cycle HE Program JAVA DEVELOPER (or shorter, SCHE JAVA DEVELOPER) for development of its Courses. It can significantly reduce the effort of developing SCP JAVA DEVELOPER and its courses (Figure 2.5). As BMU bachelor courses are based on SWEBOK, their parts of the Body of Knowledge are to be mapped into BMU SCHE courses



Figure 2.5: Mapping of required e-competences into BMU bachelor courses and courses of the BMU SCHE Java Developer

## 2.2.1 Acquiring the e-competence B.1. Design and Development (Level 3)

Figure 2.6 shows the list of knowledge areas required for ICT e-competence **B.1. Application Development**, as well as the BMU e-courses that offer learning objects (learning contents) corresponding to these knowledge areas. Using the Software Engineering Body of Knowledge (SWEBOK 3.0) we will specify all needed learning units that constitute each of the listed learning areas. The listed BMU e-courses were developed to implement SWEBOK 3.0, they provide learning objects for all knowledge units that are part of SWEBOK 3.0 Knowledge Areas.

| E-Competance: B.1. Application Development (Level 3)                                         |                                                  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|
| Knowledge                                                                                    | BMU Bachelor Courses                             |
| K1 appropriate software programs/modules                                                     |                                                  |
| K2 hardware components, tools and hardware architectures,                                    | CS101 Introduction to OO Programming             |
| K3 functional & technical designing                                                          | CS102 Objects and Data Abstraction               |
| K4 state of the art technologies                                                             |                                                  |
| K5 programming languages                                                                     | CS103 Algorithms and Data Structures             |
| K6 Power consumption models of software and / or hardware                                    | CS330 Development of Mobile Applications         |
| K7 DBMS                                                                                      | SE201 Introduction to Software Engineering       |
| K8 operating systems and software platforms                                                  |                                                  |
| K9 Integrated development environment (IDE)                                                  | SE211 Software Construction                      |
| K10 rapid application development (RAD)                                                      | IT101 IT Fundamentals                            |
| K11 IPR issues                                                                               | IT210 IT Systems                                 |
| K12 modeling technology and languages                                                        | IT350 Databases                                  |
| K13 interface definition languages (IDL)                                                     | 11350 Databases                                  |
| K14 security                                                                                 | IT370 Human-Computer Interaction                 |
| Skills                                                                                       | IIT390 Professional Practice and Ethics          |
| S1 explain and communicate the design / development to the customer                          | CS220 Computer Architecture                      |
| S2 perform and evaluate test results against product specifications                          | ·                                                |
| S3 apply appropriate software and / or hardware architectures                                | S225 Operating System                            |
| S4 develop user interfaces, business software components and<br>embedded software components | IT381 Information Security and Safety            |
| S5 manage and guarantee high levels of cohesion and quality                                  | SE311 Software Design and Architecture           |
| S6 use data models                                                                           | SE321 Quality Assurance, Testing and Maintenance |
| S7 perform and evaluate test in the customer or target environment                           |                                                  |

S8 cooperate with development team and with application designers

Figure 2.6: Knowledge areas of e-competence B.1. and related BMU e-courses

## 2.2.2 Acquiring the e-competence B.2. System Integration (Level 2)

Figure 2.7 shows the knowledge areas required for the **B.2. System Integration** ecompetence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (specified by IEEE Computer Society and AIS) for each learning area.

#### E-Competance: B.2. Component Integration (Level 2) BMU Bachelor Courses Knowledge K1 old, existing and new hardware components / software CS220 Computer Architecture programs / modules SE201 Introduction to Software Engineering K2 the impact that system integration has on existing system / organisation SE311 Software Design and Architecture K3 interfacing techniques between modules, systems and components SE321 Quality Assurance, Testing and Maintenance K4 integration testing techniques SE211 Software Construction K5 development tools (e.g. development environment, management, source code access /revision control) CS230 Distributed Systems Skills S1 measure system performance before, during and after system integration S2 document and record activities, problems and related repair activities S3 match customers' needs with existing products S4 verify that integrated systems capabilities and efficiency match specifications S5 secure / back-up data to ensure integrity during system integration

#### Figure 2.7: The knowledge areas specified for the e-competence B.2. Component Integration and related BMU e-courses.

## 2.2.3 Acquiring the e-competence B.3.Testing (Level 2)

Figure 2.8 shows the knowledge areas required for the **B.3. Testing** e-competence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (specified by IEEE Computer Society and AIS) for each learning area.

#### E-Competance: B.3. Testing (Level 2)



Figure 2.8: The knowledge areas specified for the e-competence B.3. Testing and related BMU e-courses.

## 2.2.4 Acquiring the e-competence B.5. Documentation Production (Level 3)

Figure 2.9 shows the knowledge areas required for the **B.5.** Documentation **Production** e-competence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (for each learning area.

| E-Competance: B.5. Documentation Production (Le                                                                             | <mark>/el 3)</mark>                 |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Knowledge                                                                                                                   | BMU Bachelor Courses                |
| K1 tools for production, editing and distribution of professional<br>documents                                              | S345 Management of Digital Contents |
| K2 tools for multimedia presentation creation                                                                               | IT370 Human-Computer Interaction    |
| K3 different technical documents required for designing,<br>developing and deploying products,<br>applications and services |                                     |
| K4 version control of documentation production                                                                              |                                     |
| Skills                                                                                                                      |                                     |
| S1 observe and deploy effective use of corporate standards for<br>publications                                              |                                     |
| S2 prepare templates for shared publications                                                                                |                                     |
| S3 organise and control content management workflow                                                                         |                                     |
| S4 keep publications aligned to the solution during the entire lifecycle                                                    |                                     |

Figure 2.9: The knowledge areas specified for the e-competence B.5. Documentation Production and related BMU e-courses.

## 2.2.5 Acquiring the e-competence C.4. Problem Management (Level 3)

Figure 2.10 shows the knowledge areas required for the **C.4. Problem Management** e-competence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (for each learning area.

#### E-Competance: C.4. Problem Management (Level 3)

| Knowledge                                                                                                              | BMU Bachelor Courses                             |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| K1 the organisation's overall ICT infrastructure and key components                                                    | IT270 IT Infrastructure                          |
| K2 the organisation's reporting procedures                                                                             | SE321 Quality Assurance, Testing and Maintenance |
| K3 the organisation's critical situation escalation procedures                                                         |                                                  |
| K4 the application and availability of diagnostic tools                                                                |                                                  |
| K5 the link between system infrastructure elements and impact of failure on related business processes.                |                                                  |
| Skills                                                                                                                 |                                                  |
| S1 monitor progress of issues throughout lifecycle and<br>communicate effectively                                      |                                                  |
| S2 identify potential critical component failures and take action to<br>mitigate effects of failure                    |                                                  |
| S3 conduct risk management audits and act to minimise<br>exposures                                                     |                                                  |
| S4 allocate appropriate resources to maintenance activities,<br>balancing cost and risk                                |                                                  |
| S5 communicate at all levels to ensure appropriate resources are deployed internally or externally to minimise outages |                                                  |

Figure 2.10: The knowledge areas specified for the e-competence **C.4. Problem Management** and related BMU e-courses.

## 2.2.6 The List of BMU e-Courses Related to c-competences Specified for the ICT Profile Developer

After analyzing Figures 2.6 -2.10, Figure 2.11 was created showing the BMU ecourses corresponding to all five e-competence specified for the ICT Profile **Java Developer**.



Figure 2.8: The BMU e-courses related to five e-competences specified for the ICT Profile Java Developer
#### 2.2.7 Mapping of BMU Bachelor Courses into SCHE Java Developer Courses

Next step in development process of SCHE Java Developer courses if mapping of BMU e-courses into SCHE Java Developer e-courses (Figure 2.9).



Figure 2.9: Mapping of BMU bachelor courses into SCHE Java Developer courses

Figure 2.10 shows created SCHE Java Developer courses. These courses takes into account specifics of SCHE Java Developer. They have to provide more practical and simpler explanation of programming concepts, more elaborated shown examples, and many assignments for individual exercise of each student. In the next chapter, syllabi of these courses will be specified.



Figure 2.10 Created SCHE Java Developer courses

# **3 COURSES OF SCP JAVA DEVELOPER**

## 3.1 Sequence of courses of SCHE Java Developer

The following table shows all courses and their planned sequence.

| #  | Course                                          | Starting<br>Date 1 | Exam Date 1 |
|----|-------------------------------------------------|--------------------|-------------|
| 1  | Introduction to IT systems                      | 02.10.2017         | 18.10.2017  |
| 2  | Programming Fundamentals                        | 23.10.2017         | 03.11.2018  |
| 3  | Java 1: Fundamentals of Programming             | 07.11.2017         | 24.11.2017  |
| 4  | Java 2: Object-oriented programming             | 27.11.2017         | 11.12.2017  |
| 5  | Java 3: GUI Programming                         | 12.12.2017         | 30.12.2017  |
| 6  | Java 4: Data Structures and Algorithms – Part A | 08.01.2018         | 25.01.2018  |
| 7  | Java 5: Data Structures and Algorithms – Part B | 29.01.2018         | 15.02.2018  |
| 8  | Java 6: Java ME                                 | 19.02.3018         | 07.03.2018  |
| 9  | Java 7: Advanced Java Programming               | 125.3.2018         | 28.03.2018  |
| 10 | Java 8: Java Enterprise Edition                 | 02.04.2018         | 21.04.2018  |
| 11 | Software Development Process and Methodologies  | 30.04.2018         | 19.05.2018  |
| 12 | Software Construction                           | 21.05.2018         | 13.06.2018  |
| 13 | Software Development Project                    | 18.06.2018         | 05.07.2918  |
| 14 | Intership (8 weeks)                             | 06.08.2018         | 29.09.2018  |

The following section specifies syllabi of these courses.

### 3.2 Syllabi of Programming Module Courses

The Programming Module provides the following SC Courses:

- 1. Introduction of IT Systems
- 2. Programming Fundamentals
- 3. JAVA 1: Fundamentals of Programming
- 4. JAVA 2: Object-Oriented Programming
- 5. JAVA 3: GUI Programming
- 6. JAVA 4: Data Structures and Algorithms Part A
- 7. JAVA 5: Data Structures and Algorithms Part A
- 8. JAVA 6: JAVA ME
- 9. JAVA 7: Advanced Java programming
- 10. JAVA 8: Java Enterprise Edition
- 11. Software Development Process and Methodologies
- 12. Software Construction
- 13. Software Development Project
- 14. Internship (8 weeks)

### **3.2.1 Course 1: Introduction to IT Systems**

Duration: 15 days, 12 online teaching days, 2 day workshop days Number of hours: 3 hours per online/workshop day, Total: 42 hours

| Day | Hours | Teaching<br>units                                                                                              | Topics                                                                                                                                                                                                                                                                                                                            | Results – knowledge<br>or skills that the<br>students should<br>receive |
|-----|-------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1   | 3     | Model of IT<br>Systems                                                                                         | ComponentsofcomputersystemsComputersystemSystemsoftwareOperatingsystemUtilitiessoftwareApplicationsoftwareComputerHardwareCentralprocessingunitInput/outputdevicesMemoryDataandinformationInputandinformation                                                                                                                     |                                                                         |
| 2   | 3     | Operating<br>Systems                                                                                           | Overview of the operating<br>system functions<br>Operating system roles<br>Types of operating systems and<br>their characteristics<br>Operating systems of personal<br>computers<br>Operating systems server<br>Real-time operating systems<br>Mainframe operating systems<br>File system<br>Comparison of Windows and OS<br>Unis |                                                                         |
| 3   | 3     | Concepts<br>and<br>Fundamental<br>s of<br>Information<br>Management<br>Architecture<br>of Data<br>Organisation | Information systems: purpose,<br>use, value<br>Characteristics of data (quality,<br>accuracy, changes with time)<br>Challenges in data management<br>Life cycle of data<br>Database systems<br>Knowledge management<br>Data models<br>Relational model<br>Normal forms<br>Functional dependencies<br>1NF, 2NF, 3NF                |                                                                         |

ECTS: 4

| 4 | 3 | Data<br>Modelling                                                                    | Conceptual model<br>Entity Relationship Diagrams<br>Logical models<br>Physical models<br>Standardized modeling in IDEF1<br>and UML<br>DDL: CREATE TABLE, CREATE<br>INDEX; ALTER TABLE, DROP                                                                                                                                                                                                                                                                     |  |
|---|---|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   |   | DDL i basic<br>form of<br>statement<br>SELECT                                        | TABLE;<br>Commands CREATE TABLE,<br>CREATE INDEX; ALTER<br>TABLE, DROP TABLE;<br>Commands: INSERT, UPDATE,<br>DELETE<br>Examples of DDL commands for<br>creating database elements<br>Examples of applying the basic<br>form of the SELECT command<br>to display the unchanged table<br>contents<br>DMS: INSERT, UPDATE,<br>DELETE<br>Queries over one table showing<br>the unchanged content of the<br>table: SELECT FROM;                                     |  |
| 5 | 6 | Web<br>Technologies<br>Development<br>of Web Sites<br>Architecture<br>of Information | Preged web technology: HTTP<br>Protocol, HTML / XHTML XML<br>Web interface<br>Availability issue<br>Web Accessibility Initiative<br>Web Services<br>Hypertext / hypermedia:<br>Effective Communication,<br>Interfaces, Navigation Schemes,<br>Media Types<br>Web design process: Design by<br>user, Web design templates,<br>Organization of information<br>Digital libraries<br>Media formats<br>Tools for recording, creating and<br>producing<br>Compression |  |
| 7 | 3 | Inter-                                                                               | Broadcast media (Streaming<br>media)<br>Implementation and integration<br>Integration with the database<br>Architecture for System                                                                                                                                                                                                                                                                                                                              |  |

|          |   | Systems<br>Communicati<br>on                                                                                                                                                                   | Integration<br>DCOM, CORBA, RMI<br>Web Services and Middleware<br>Network programming<br>Messaging and routing services<br>Data transfer to lower.                                                                                                                                                                                                                                                                                                 |  |
|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 8        | 3 | Mapping and<br>Exchange of<br>Data                                                                                                                                                             | Meta data<br>Presentation and encoding of<br>data<br>XML, DTD, XML Schema<br>XML document parsing<br>XSL, XSLT and Xpath<br>Client-server programming                                                                                                                                                                                                                                                                                              |  |
| 9        | 3 | Integrative<br>Coding<br>Scripting<br>Technics<br>Techics of<br>Code Writing                                                                                                                   | IPT3. Integrated coding: MVC,<br>singleton, factory method,<br>façade, proxy, decorator and<br>observer<br>Writing a script and the role of a<br>scripting language<br>Comparative presentation of<br>Adopt and Adapt techniques<br>compared to make<br>Versions and version<br>management<br>Components, interfaces and<br>integration<br>Infrastructure, middleware and<br>platforms                                                             |  |
| 10<br>11 | 6 | (HCI)Human-<br>Computer<br>Interacion:<br>Human<br>Factors<br>Ascpects of<br>HCI of<br>Application<br>Domains<br>Human-<br>Centered<br>Evaluation<br>Development<br>of effective<br>interfaces | Cognitive principles - perception,<br>memory, problem solving<br>Understanding the users<br>Design for man<br>Ergonomics<br>Types of environment<br>Cognitive models<br>Approach<br>Usability testing<br>Usability standardsUserexperience<br>Interaction<br>Matching interface elements to<br>user<br>The stress syndrome caused by<br>repetition of the same operations<br>PHP language. Writing, analysis<br>and testing a script that includes |  |

|     |   |                             | selection, repetition, and                             |                           |
|-----|---|-----------------------------|--------------------------------------------------------|---------------------------|
|     |   |                             | forwarding                                             |                           |
|     |   |                             | Create a PHP document for your                         |                           |
|     |   |                             | purpose                                                |                           |
| 12  | 3 | Basics of                   | KStandardization bodies                                |                           |
| . – | Ũ | Computer                    |                                                        |                           |
|     |   | Networks                    | OSI model                                              |                           |
|     |   | Routing                     | Internet model                                         |                           |
|     |   | liteating                   | Nodes and connections                                  |                           |
|     |   |                             | IEEE 802.1                                             |                           |
|     |   |                             | Routing algorithms<br>Routing protocols                |                           |
|     |   |                             | Wireless and mobile connections                        |                           |
|     |   |                             | Commuted and packet transfer                           |                           |
|     |   |                             | Physical media                                         |                           |
|     |   |                             | Satellite communications                               |                           |
|     |   | Physical                    | Shannon's law                                          |                           |
|     |   | Layer                       | Multimedia technologies WWW Databases and file servers |                           |
| 40  | 6 |                             |                                                        |                           |
| 13  | 6 | Information<br>Security and | History and terminology<br>Security way of thinking    |                           |
| 14  |   | Safty:                      | Model for information security                         |                           |
|     |   | Fundamental                 | (threats, vulnerability, attacks,                      |                           |
|     |   | Aspects                     | countermeasures)                                       |                           |
|     |   | Security                    | Cryptography and cryptosystems                         |                           |
|     |   | Mechanisms                  | Turpen of etteck                                       |                           |
|     |   | Ataks<br>Security           | Types of attack<br>Security domains                    |                           |
|     |   | Coounty                     | Give an overview of possible                           |                           |
|     |   |                             | attacks on network and                                 |                           |
|     |   |                             | computer resources                                     |                           |
|     |   |                             | Legal system                                           |                           |
|     |   | Domains                     | Digital investigation and its relationship with other  |                           |
|     |   | Forensics                   | investigations                                         |                           |
|     |   | Information                 | Rules of record                                        |                           |
|     |   |                             | Media analysis                                         |                           |
|     |   |                             | Searching and seizing the device                       |                           |
|     |   | States Model                | Transfer                                               |                           |
|     |   | of Risk                     | Storage<br>Processing                                  |                           |
|     |   | Analysis                    | Risk assessment                                        |                           |
|     |   |                             | Costs                                                  |                           |
|     |   | Society                     | Availability                                           |                           |
|     |   | Security<br>Services        | Integrity                                              |                           |
|     |   |                             | Secrecy                                                |                           |
|     |   |                             | Authentication<br>Non-repudiation                      |                           |
| 45  | 2 | Final                       |                                                        | To ovaluate knowledge and |
| 15  | 3 | Final                       | Students get examination questions                     | To evaluate knowledge and |

| examinat                    | ion and problems           | skills acquired during the |
|-----------------------------|----------------------------|----------------------------|
| (in B<br>computer<br>rooms) | MU Exam duration - 3 hours | course                     |

### 3.2.2 Course 2: Programming Fundamentals

Duration: 11 days, 8 online teaching days, 2 day workshop days Number of hours: 3 hours per online/workshop day, Total: 30 hours

| EC | T | S: | 3 |
|----|---|----|---|
|    |   |    |   |

| Day | Hours | Teaching units                                               | Topics                                                                                                                                                                                                                                          | Results – knowledge or<br>skills that the students<br>should receive                                                                                                                                                                                                                                    |
|-----|-------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2 | 6     | Problem Solving<br>Techniques<br>Programming<br>Fundamentals | What Is a computer?<br>Definition of Problem Solving<br>Formulating the Real Problem<br>Analyze the Problem<br>Design a Solution Search Strategy<br>Problem Solving Using Programs<br>The Programming Process<br>Programming Paradigms          | To formulate and analyse<br>programming problems<br>To design a solution search<br>strategy<br>To understand the<br>programming process<br>To understand<br>programming paradigmes                                                                                                                      |
| 2,3 | 6     | Programming<br>Language<br>Basics                            | Programming Language Overview<br>Operating Systems<br>Syntax and Semantics of Programming<br>Languages<br>Low-Level Programming Languages<br>High-Level Programming Languages<br>Declarative vs. Imperative<br>Programming Languages            | To understane the role of<br>operating systems<br>To difirentiate the syntax<br>and semantics of<br>programming languages<br>To understabd the<br>difference between low-<br>and high-level languages<br>To understand the<br>difference between<br>declarative and imperative<br>programming languages |
| 4,5 | 6     | Introduction of<br>algorithms and<br>problem-solving         | Problem-solving strategies;<br>the role of algorithms in the problem-<br>solving process;<br>implementation strategies for<br>algorithms;<br>the concept and properties of<br>algorithms<br>Examples of algoritmic problem-solving<br>processes | To understabd the roel of<br>algorithms<br>To implement alogoritmes<br>in porgramming<br>To understand the concept<br>and properties of<br>algorithms<br>To implement algorithms in<br>solving different problems                                                                                       |
| 7   | 3     | F2FProjectWorkshop(inBMUcomputerrooms,optionallyonline)      | Exercises and student assignments<br>Distribution of projects assignments<br>Students work on their project tasks<br>with assistance of instructors                                                                                             | To learn how to specify a project<br>To learn how to organize the project and to break-<br>down tasks<br>To implement acquired knowledge during the course                                                                                                                                              |

| 8  | 3 | F2F Project<br>Workshop                                | Students work on their project tasks with assistance of instructors           | To develop necessary Java<br>programs                                                              |
|----|---|--------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|    |   | (in BMU<br>computer<br>rooms,<br>optionally<br>online) |                                                                               | To realize all programming<br>tasks of students' project.<br>Presentation of the project<br>report |
| 13 | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms)  | Students get examination questions<br>and problems<br>Exam duration - 3 hours | To evaluate knowledge and skills acquired during the course                                        |

### 3.2.3 Course 3: JAVA 1: Fundamentals of Programming

Duration: 17 days, 14 online teaching days, 2 day workshop days Number of hours: 3 hours per online/workshop day, Total: 48 hours

| ECT | S: 4       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----|------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Day | Ho-<br>urs | Teaching<br>units                     | Topics                                                                                                                                                                                                                                                                                                                                                                                                                      | Objectives – knowledge or skills that the student should receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1   | 3          | Introduction<br>to Java               | What is Java?<br>Specification, API, JDK,<br>and iDE<br>A simple Java program<br>Creating, compiling, and<br>executing a java program<br>Programming style and<br>documentation<br>Programming errors<br>Developing java programs<br>using NetBeans<br>Programming exercises<br>Programming assignment                                                                                                                      | To understand computer basics,<br>programs, and operating systems<br>To describe the relationship between Java<br>and the World Wide Web<br>To understand the meaning of Java<br>language specification, API, JDK, and IDE<br>To write a simple Java program<br>To display output on the console<br>To explain the basic syntax of a Java<br>program<br>To create, compile, and run Java<br>programs<br>To use sound Java programming style<br>and document programs properly<br>To explain the differences between syntax<br>errors, runtime errors, and logic errors<br>To develop Java programs using<br>NetBeans                                                                                                                                |
| 2,3 | 6          | Elementary<br>programmin<br>g in Java | Writing a simple program<br>Reading input from the<br>console<br>Identifiers<br>Variables<br>Assignment statements<br>and assignment<br>expressions<br>Named constants<br>Naming conventions<br>Numeric data types and<br>operations<br>Numeric literals<br>Evaluating expressions<br>and operator precedence<br>Case study: displaying the<br>current time<br>Augmented assignment<br>operators<br>Increment and decrement | To write Java programs to perform simple<br>computations<br>To obtain input from the console using the<br>Scanner class<br>To use identifiers to name variables,<br>constants, methods, and classes<br>To use variables to store data<br>To program with assignment statements<br>and assignment expressions<br>To use constants to store permanent data<br>To name classes, methods, variables, and<br>constants by following their naming<br>conventions<br>To explore Java numeric primitive data<br>types: byte, short, int, long, float, and<br>double<br>To read a byte, short, int, long, float, or<br>double value from the keyboard<br>To perform operations using operators +, -<br>, *, /, and %<br>To perform exponent operations using |

|     |   |                                      | operators                                                                                                                                                                                              | Math.pow(a, b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|---|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |   |                                      | operators<br>Numeric type conversions<br>Software development<br>process<br>Case study: counting<br>monetary units<br>Common errors and<br>pitfalls<br>Programming exercises<br>Programming assignment | Math.pow(a, b)<br>To write integer literals, floating-point<br>literals, and literals in scientific notation (<br>To write and evaluate numeric<br>expressions<br>To obtain the current system time using<br>System.currentTimeMillis()<br>To use augmented assignment operators<br>To distinguish between postincrement and<br>preincrement and between postdecrement<br>and predecrement<br>To cast the value of one type to another<br>type<br>To describe the software development<br>process and apply it to develop the loan<br>payment program<br>To write a program that converts a large<br>amount of money into smaller units<br>To avoid common errors and pitfalls in |
|     |   |                                      |                                                                                                                                                                                                        | elementary programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4,5 | 6 | Selections<br>(program<br>branching) | Boolean data type<br>If statements<br>Two-way if-else<br>statements<br>Nested if and multi-way if-                                                                                                     | To declare boolean variables and write<br>Boolean expressions using relational<br>operators<br>To implement selection control using one-<br>way if statements<br>To implement selection control using two-                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |   |                                      | else statements<br>Common errors and                                                                                                                                                                   | way if-else statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |   |                                      | pitfalls                                                                                                                                                                                               | To implement selection control using<br>nested if and multi-way if statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |   |                                      | Generating random numbers                                                                                                                                                                              | To avoid common errors and pitfalls in if statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |                                      | Case study: computing body mass index                                                                                                                                                                  | To generate random numbers using the<br>Math.random() method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |   |                                      | Case study: computing taxes                                                                                                                                                                            | To program using selection statements for<br>a variety of examples (SubtractionQuiz,<br>BMI, ComputeTax)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |   |                                      | Case study: determining<br>leap year                                                                                                                                                                   | To combine conditions using logical operators (!, &&,   , and ^)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |   |                                      | Case study: lottery                                                                                                                                                                                    | To program using selection statements with combined conditions (LeapYear,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |   |                                      | Switch statements                                                                                                                                                                                      | Lottery)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |   |                                      | Conditional expressions<br>Operator precedence and                                                                                                                                                     | To implement selection control using<br>switch statements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |   |                                      | associativity<br>Debugging                                                                                                                                                                             | To write expressions using the conditional expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |   |                                      | Programming exercises                                                                                                                                                                                  | To examine the rules governing operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |   |                                      | Programming assignment                                                                                                                                                                                 | precedence and associativity<br>To apply common techniques to debug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|     |   |                             |                                                               | errors                                                                                       |
|-----|---|-----------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 6,7 | 6 | Loops                       | The while loop<br>The do-while loop                           | To write programs for executing<br>statements repeatedly using a while loop                  |
|     |   |                             | The for loop                                                  | To follow the loop design strategy to develop loops                                          |
|     |   |                             | Which loop to use?                                            | To control a loop with a sentinel value                                                      |
|     |   |                             | Nested loops                                                  | To obtain large input from a file using                                                      |
|     |   |                             | Minimizing numeric errors                                     | input redirection rather than typing from the keyboard                                       |
|     |   |                             | Case studies<br>Keywords break and                            | To write loops using do-while statements                                                     |
|     |   |                             | continue                                                      | To write loops using for statements                                                          |
|     |   |                             | Case study: checking<br>palindromes<br>Case study: displaying | To discover the similarities and<br>differences of three types of loop<br>statements         |
|     |   |                             | prime numbers                                                 | To write nested loops                                                                        |
|     |   |                             | Programming exercises<br>Programming assignment               | To learn the techniques for minimizing numerical errors                                      |
|     |   |                             |                                                               | To learn loops from a variety of examples (GCD, FutureTuition, Dec2Hex)                      |
|     |   |                             |                                                               | To implement program control with break and continue                                         |
|     |   |                             |                                                               | To process characters in a string using a<br>loop in a case study for checking<br>palindrome |
|     |   |                             |                                                               | To write a program that displays prime numbers                                               |
| 8,9 | 6 | Mathematica<br>I functions, | Common mathematical functions                                 | To solve mathematical problems by using the methods in the Math class                        |
|     |   | characters<br>and strings   | Character data type and operations                            | To represent characters using the char type                                                  |
|     |   |                             | The string type<br>Case studies                               | To encode characters using ASCII and Unicode                                                 |
|     |   |                             | Formatting console output                                     | To represent special characters using the escape sequences                                   |
|     |   |                             | Programming exercises Programming assignment                  | To cast a numeric value to a character and cast a character to an integer                    |
|     |   |                             |                                                               | To compare and test characters using the static methods in the Character class.              |
|     |   |                             |                                                               | To introduce objects and instance methods                                                    |
|     |   |                             |                                                               | To represent strings using the String object                                                 |
|     |   |                             |                                                               | To return the string length using the length() method                                        |
|     |   |                             |                                                               | To return a character in the string using the charAt(i) method                               |
|     |   |                             |                                                               | To use the + operator to concatenate                                                         |

|    |   |             |                                             | strings                                                                  |
|----|---|-------------|---------------------------------------------|--------------------------------------------------------------------------|
|    |   |             |                                             | To return an uppercase string or a lowercase string and to trim a string |
|    |   |             |                                             | To read strings from the console                                         |
|    |   |             |                                             | To read a character from the console                                     |
|    |   |             |                                             | To compare strings using the equals method and the compareTo methods     |
|    |   |             |                                             | To obtain substrings                                                     |
|    |   |             |                                             | To find a character or a substring in a string using the indexOf method  |
|    |   |             |                                             | To program using characters and strings (GuessBirthday)                  |
|    |   |             |                                             | To convert a hexadecimal character to a decimal value (HexDigit2Dec)     |
|    |   |             |                                             | To revise the lottery program using strings (LotteryUsingStrings)        |
|    |   |             |                                             | To format output using the<br>System.out.printf method                   |
| 10 | 6 | Methods     | Defining a method                           | To define methods with formal parameters                                 |
| 11 |   |             | Calling a method                            | To invoke methods with actual                                            |
|    |   |             | void method example                         | parameters (i.e., arguments)<br>To define methods with a return value    |
|    |   |             | Passing arguments by values                 | To define methods without a return value                                 |
|    |   |             | Modularizing code                           | To pass arguments by value                                               |
|    |   |             | Case study: converting                      | To develop reusable code that is modular,                                |
|    |   |             | hexadecimals to decimals                    | easy to read, easy to debug, and easy to maintain                        |
|    |   |             | Overloading methods                         | To write a method that converts                                          |
|    |   |             | The scope of variables                      | hexadecimals to decimals                                                 |
|    |   |             | Case study: generating<br>random characters | To use method overloading and<br>understand ambiguous overloading        |
|    |   |             | Method abstraction and stepwise refinement  | To determine the scope of variables                                      |
|    |   |             | Programming exercises                       | To apply the concept of method<br>abstraction in software development    |
|    |   |             | Programming assignment                      | To design and implement methods using                                    |
|    |   |             |                                             | stepwise refinement                                                      |
| 12 | 6 | Single-     | Array basics                                | To describe why arrays are necessary in                                  |
| 13 |   | Dimensional | Case study: analyzing                       | programming                                                              |
|    |   | Arrays      | numbers                                     | To declare array reference variables and create arrays                   |
|    |   |             | Case study: deck of cards<br>Copying arrays | To obtain array size using                                               |
|    |   |             | Passing arrays to                           | arrayRefVar.length and know default values in an array                   |
|    |   |             | methods                                     | To access array elements using indexes                                   |
|    |   |             | Returning an array from a method            | To declare, create, and initialize an array using an array initializer   |

|    |   |                                                | Case study: counting the<br>occurrences of each letter<br>Variable-length argument<br>lists<br>Searching arrays<br>Sorting arrays<br>The arrays class<br>Command-line arguments<br>Programming exercises<br>Programming assignment                                                                                       | To program common array operations<br>(displaying arrays, summing all elements,<br>finding the minimum and maximum<br>elements, random shuffling, and shifting<br>elements)<br>To simplify programming using the for<br>each loops<br>To apply arrays in application<br>development (AnalyzeNumbers,<br>DeckOfCards)<br>To copy contents from one array to<br>another<br>To develop and invoke methods with<br>array arguments and return valueTo<br>define a method with a variable-length<br>argument list<br>To search elements using the linear or<br>binary search algorithm.<br>To sort an array using the selection sort<br>approach<br>To use the methods in the java.util.Arrays<br>class<br>To pass arguments to the main method<br>from the command line |
|----|---|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 | δ | Multi-<br>Dimensional<br>Arrays                | Two-dimensional array<br>basics<br>Processing two-<br>dimensional arrays<br>Passing two-dimensional<br>arrays to methods<br>Case study: grading a<br>multiple-choice test<br>Case study: finding the<br>closest pair<br>Case study: sudoku<br>Multidimensional arrays<br>Programming exercises<br>Programming assignment | To give examples of representing data<br>using two-dimensional arrays<br>To declare variables for two-dimensional<br>arrays, create arrays, and access array<br>elements in a two-dimensional array using<br>row and column indexes<br>To program common operations for two-<br>dimensional arrays (displaying arrays,<br>summing all elements, finding the<br>minimum and maximum elements, and<br>random shuffling)<br>To pass two-dimensional arrays to<br>methods<br>To write a program for grading multiple-<br>choice questions using twodimensional<br>arrays<br>To solve the closest-pair problem using<br>two-dimensional arrays<br>To check a Sudoku solution using two-<br>dimensional arrays<br>To use multidimensional arrays                          |
| 15 | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer | Distribution of projects<br>assignments<br>Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                                                     | To learn how to specify a project<br>To learn how to organize the project and<br>to break-down tasks<br>To implement acquired knowledge during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|    |   | rooms,<br>optionally -<br>online)                                                   |                                                                               | the course                                                                                                                            |
|----|---|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 16 | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | Students work on their<br>project tasks with<br>assistance of instructors     | To develop necessary Java programs<br>To realize all programming tasks of<br>students' project.<br>Presentation of the project report |
| 17 | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms)                               | Students get examination<br>questions and problems<br>Exam duration - 3 hours | To evaluate knowledge and skills acquired during the course                                                                           |

# 3.2.4 Course 4: Java 2: Object-oriented programming

ECTS: 3

Duration: 13 days, 10 online teaching days, 2 day workshop days Number of hours: 3 hours per online/workshop day, Total: 36 hours

| Day | Ho-<br>urs | Teaching<br>units   | 9   | Topics                                        |        | Objectives – knowledge or skills that the student should receive                                                            |
|-----|------------|---------------------|-----|-----------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------|
| 1,2 | 6          | Classes a objects   | and | Defining classes objects                      | for    | To describe objects and classes, and use classes to model objects                                                           |
|     |            | -                   |     | Example: defining cla<br>and creating objects | asses  | To use UML graphical notation to describe<br>classes and objects                                                            |
|     |            |                     |     | Constructing objects constructors             | using  | To demonstrate how to define classes and create objects                                                                     |
|     |            |                     |     | Accessing objects                             | via    | To create objects using constructors                                                                                        |
|     |            |                     |     | reference variables                           |        | To access objects via object reference                                                                                      |
|     |            |                     |     | Using classes from<br>java library            | n the  |                                                                                                                             |
|     |            |                     |     | Static variables, cons<br>and methods         | tants, |                                                                                                                             |
|     |            |                     |     | Visibility modifiers                          |        | To access an object's data and methods<br>using the object member access operator                                           |
|     |            |                     |     | Data field encapsulati                        | on     | (.)<br>To define data fields of reference types                                                                             |
|     |            |                     |     | Passing objects methods                       | to     | To define data fields of reference types<br>and assign default values for an object's<br>data fields                        |
|     |            |                     |     | Array of objects                              |        | To distinguish between object reference                                                                                     |
|     |            |                     |     | Immutable objects                             | and    |                                                                                                                             |
|     |            |                     |     | classes<br>The scope of variable              | s      | To use the Java library classes Date,<br>Random, and Point2D                                                                |
|     |            |                     |     | The this reference                            |        | To distinguish between instance and static                                                                                  |
|     |            |                     |     | Programming exercise                          | es     | variables and methods                                                                                                       |
|     |            |                     |     | Programming assignn                           | nent   | To define private data fields with appropriate getter and setter methods                                                    |
|     |            |                     |     |                                               |        | To encapsulate data fields to make classes easy to maintain                                                                 |
|     |            |                     |     |                                               |        | To develop methods with object arguments<br>and differentiate between primitive-type<br>arguments and object-type arguments |
|     |            |                     |     |                                               |        | To store and process objects in arrays                                                                                      |
|     |            |                     |     |                                               |        | To create immutable objects from<br>immutable classes to protect the contents<br>of objects                                 |
|     |            |                     |     |                                               |        | To determine the scope of variables in the context of a class                                                               |
|     |            |                     |     |                                               |        | To use the keyword this to refer to the calling object itself                                                               |
| 3,4 | 6          | Object-<br>oriented |     | Class abstraction encapsulation               | and    | To apply class abstraction to develop software                                                                              |

|     |   | thinking           |                                                                            |                                                                                                                                      |
|-----|---|--------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|     |   | tilliking          | Thinking in objects                                                        | To explore the differences between                                                                                                   |
|     |   |                    | Class relationships                                                        | the procedural paradigm and<br>object-oriented paradigm                                                                              |
|     |   |                    | Case study: designing the course class                                     | To discover the relationships                                                                                                        |
|     |   |                    | Case study: designing a<br>class for stacks                                |                                                                                                                                      |
|     |   |                    | Processing primitive data type values as objects                           | object onented paradigm                                                                                                              |
|     |   |                    | Automatic conversion<br>between primitive types<br>and Wrapper class types | To create objects for primitive values using the wrapper classes (Byte, Short, Integer, Long, Float, Double, Character, and Boolean) |
|     |   |                    | The BigInteger and<br>BigDecimal classes                                   | To simplify programming using                                                                                                        |
|     |   |                    | The String class                                                           | automatic conversion between                                                                                                         |
|     |   |                    | The StringBuilder and<br>StringBuffer classes                              | primitive types and wrapper class types                                                                                              |
|     |   |                    | Programming exercises<br>Programming assignment                            | To use the BigInteger and<br>BigDecimal classes for computing<br>very large numbers with arbitrary<br>precisions                     |
|     |   |                    |                                                                            | To use the String class to process immutable strings                                                                                 |
|     |   |                    |                                                                            | To use the StringBuilder and<br>StringBuffer classes to process<br>mutable strings                                                   |
| 5,6 | 6 | Inheritance<br>and | Superclasses and subclasses,                                               | To define a subclass from a superclass through inheritance                                                                           |
|     |   | Polymorphis<br>m   | Superclasses and subclasses methods                                        | 0                                                                                                                                    |
|     |   |                    | Using super keyword                                                        | To override instance methods in the                                                                                                  |
|     |   |                    | Overriding methods<br>Overriding vs overloading,<br>Polymorphism           | To distinguish differences between                                                                                                   |
|     |   |                    | Dynamic binding                                                            | overriding and overloading<br>To explore the toString() method in the                                                                |
|     |   |                    | Casting objects and the instanceof operator.                               | Object class                                                                                                                         |
|     |   |                    | The Object's equals                                                        | To discover polymorphism and dynamic<br>binding                                                                                      |
|     |   |                    | method<br>The ArrayList class                                              | To describe casting and explain why explicit downcasting is necessary                                                                |
|     |   |                    | Case study: a custom<br>stack                                              | To explore the equals method in the Object class                                                                                     |
|     |   |                    | The protected data and methods                                             | To store, retrieve, and manipulate objects in an ArrayList                                                                           |
|     |   |                    | Preventing extending and overriding                                        | sort and shuffle a list, andto obtain max                                                                                            |
|     |   |                    | Programming exercises                                                      | and min element from a list                                                                                                          |

| 7,8 | 6 | Exception                | Programming assignment                                                                                                                                                                                                                                                                                                                           | To implement a Stack class using ArrayList<br>To enable data and methods in a<br>superclass accessible from subclasses<br>using the protected visibility modifier<br>To prevent class extending and method<br>overriding using the final                                                                                                                                                                 |
|-----|---|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |   | Handling and<br>Text I/O | Exception types<br>More on exception<br>handling<br>The finally clause<br>When to use exceptions<br>Rethrowing exceptions<br>Chained exceptions<br>Defining custom exception<br>classes<br>The File class<br>File input and output<br>Reading data from the<br>Web<br>Case study: Web Crawler<br>Programming exercises<br>Programming assignment | To explore the advantages of using<br>exception handling<br>To distinguish exception types: Error (fatal)<br>vs. Exception (nonfatal)and checked vs.<br>unchecked<br>To declare exceptions in a method header<br>To throw exceptions in a method<br>To write a try-catch block to handle<br>exceptions<br>To explain how an exception is propagated<br>To obtain information from an exception<br>object |

|    |   |                                                          |                                                                                                                                                                                                                                                                                                                                            | To write data to a file using the PrintWriter<br>class<br>To use try-with-resources to ensure that<br>the resources are closed automatically<br>To read data from a file using the Scanner<br>class<br>To understand how data is read using a<br>Scanner<br>To develop a program that replaces text in<br>a file<br>To read data from the Web<br>To develop a Web Crawler |
|----|---|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | 6 | Abstract<br>Classes and<br>Interfaces                    | Abstract classes<br>Case study: the<br>AbstractNumber Class<br>Case study: Calendar and<br>GregorianCalendar<br>Interfaces<br>The Comparable interface<br>The Cloneable interface<br>Interfaces vs. abstract<br>classes<br>Case Study: the Rational<br>class<br>Class design guidelines<br>Programming exercises<br>Programming assignment | <ul> <li>BigInteger, and BigDecimal using the abstract Number class</li> <li>To process a calendar using the Calendar and GregorianCalendar classes</li> <li>To specify common behavior for objects using interfaces</li> <li>To define interfaces and define classes that implement interfaces</li> <li>To define a natural order using the</li> </ul>                   |
| 11 | 3 | F2FProjectWorkshop(inBMUcomputerrooms,optionally-online) | Distribution of projects<br>assignments<br>Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                                                                       | To learn how to specify a project<br>To learn how to organize the project and to                                                                                                                                                                                                                                                                                          |
| 12 | 3 | F2FProjectWorkshop(inBMUcomputerrooms,optionally-        | Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                           |

|    |   | online)                                               |                                                                               |                                                             |
|----|---|-------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|
| 13 | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms) | Students get examination<br>questions and problems<br>Exam duration - 3 hours | To evaluate knowledge and skills acquired during the course |

### 3.2.5 Course 5: Java 3: GUI Programming

Duration: 17 days, 14 online teaching days, 2 day workshop days Number of hours: 3 hours per online/workshop day, Total: 48 hours ECTS: 4

| Day | Hou<br>rs | Teaching<br>units                                        | Topics                                                                                                                                                                                                                                                                                                                   | Objectives – knowledge or skills that the student should receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|-----------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2 | 6         | Swing<br>Graphical<br>User<br>Interfaces<br>Basics (GUI) | Swing vs. AWT<br>The Java GUI API<br>Frames<br>Layout Managers<br>Using Panels as<br>Subcontainers<br>The Color Class<br>The Font Class<br>Common Features of<br>Swing GUI Components<br>Image Icons<br>JButton<br>JCheckBox<br>JRadioButton<br>Labels<br>Text Fields<br>Programming exercises<br>Programming assignment | <ul> <li>and use the FlowLayout, GridLayout, and<br/>BorderLayout managers to lay out<br/>components in a container</li> <li>To use JPanel to group components in a<br/>subcontainer</li> <li>To create objects for colors using the Color<br/>class</li> <li>To create objects for fonts using the Font<br/>class</li> <li>To apply common features such as<br/>borders, tool tips, fonts, and colors on<br/>Swing components</li> <li>To decorate the border of GUI components</li> <li>To create image icons using the Imagelcon<br/>class.To create and use buttons using the<br/>JButton class.</li> <li>To create and use check boxes using the<br/>JCheckBox class</li> <li>To create and use radio buttons using the<br/>JRadioButton class.</li> <li>To create and use labels using the JLabel<br/>class</li> <li>To create and use text fields using the</li> </ul> |
| 3,4 | 6         | Graphics in<br>Java                                      | The Graphics class<br>Drawing Strings, Lines,<br>Rectangles, and Ovals<br>Case study: The<br>FigurePanel class<br>Drawing Arcs<br>Drawing Polygons and<br>Polylines<br>Centering a String using<br>the FontMetrics class                                                                                                 | To use a panel as a canvas to draw<br>graphics<br>To draw strings, lines, rectangles, ovals,<br>arcs, and polygons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|     |   |                             | Case study: The<br>MessagePanel class<br>Case study: The StillClock<br>class<br>Displaying images<br>Case study: The<br>ImageViewer class<br>Programming exercises<br>Programming assignment                                                                                                                                                                                                     | FigurePanel, MessagePanel, StillClock,<br>and ImageViewer                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|---|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5,6 | 6 | Java FX -<br>Basics         | JavaFX vs Swing and<br>AWT<br>The basic structure of a<br>JavaFX program<br>Panes, UI Controls, and<br>Shapes<br>Property binding<br>Common properties and<br>methods for Nodes<br>The Color class<br>The Color class<br>The Font class<br>The Image and ImageView<br>classes<br>Layout Panes<br>Shapes<br>Case study: The<br>ClockPane class<br>Programming exercises<br>Programming assignment | understand the relationship among stages,<br>scenes, and nodes<br>To create user interfaces using panes, UI<br>controls, and shapes<br>To update property values automatically<br>through property binding<br>To use the common properties style and<br>rotate for nodes<br>To create colors using the Color class<br>To create fonts using the Font class<br>To create images using the Image class<br>and to create image views using the<br>ImageView class |
| 7,8 | 6 | Event Driven<br>Programming | Events and Event Sources<br>Registering Handlers and<br>Handling Events<br>Inner classes<br>Anonymous Inner class<br>handlers<br>Simplifying Event Handling<br>Using Lambda<br>Expressions<br>Case study: Loan<br>Calculator<br>Mouse events                                                                                                                                                     | To get a taste of event-driven<br>programming<br>To describe events, event sources, and<br>event classes<br>To define handler classes, register handler<br>objects with the source object, and write<br>the code to handle events<br>To define handler classes using inner<br>classes<br>To define handler classes using<br>anonymous inner classes<br>To simplify event handling using lambda                                                                 |

|         |    |                           | Key events                                    | expressions                                                                                            |
|---------|----|---------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------|
|         |    |                           | Listeners for Observable<br>Objects           | To develop a GUI application for a loan calculator                                                     |
|         |    |                           | Animation                                     | To write programs to deal with<br>MouseEvents                                                          |
|         |    |                           | Case study: Bouncing ball                     | To write programs to deal with KeyEvents                                                               |
|         |    |                           | Programming exercises Programming assignment  | To create listeners for processing a value change in an observable object                              |
|         |    |                           |                                               | To use the Animation, PathTransition,<br>FadeTransition, and Timeline classes to<br>develop animations |
|         |    |                           |                                               | To develop an animation for simulating a bouncing ball                                                 |
| 9<br>10 | 12 | JavaFX UI<br>Controls and |                                               | To create graphical user interfaces with various user-interface controls                               |
| 11      |    | Multimedia                | CheckBox                                      | To create a label with text and graphic                                                                |
| 12      |    |                           | RadioButton                                   | using the Label class and explore<br>properties in the abstract Labeled class                          |
| 12      |    |                           | TextField                                     | To create a button with text and graphic                                                               |
|         |    |                           | TextArea                                      | using the Button class and set a handler using the setOnAction method in the                           |
|         |    |                           | ComboBox                                      | abstract ButtonBase class (§16.3).                                                                     |
|         |    |                           | ListView                                      | To create a check box using the CheckBox<br>class                                                      |
|         |    |                           | ScrollBar                                     | To create a radio button using the                                                                     |
|         |    |                           | Slider<br>Case study: Developing a            | RadioButton class and group radio buttons                                                              |
|         |    |                           | Tic-Tac-Toe game                              | To enter data using the TextField class and password using the PasswordField                           |
|         |    |                           | Video and Audio<br>Case study: National Flags | class                                                                                                  |
|         |    |                           | and Anthems                                   | To enter data in multiple lines using the TextArea class                                               |
|         |    |                           | Programming exercises                         | To select a single item using ComboBox                                                                 |
|         |    |                           | Programming assignment                        | To select a single or multiple items using ListView                                                    |
|         |    |                           |                                               | To select a range of values using ScrollBar                                                            |
|         |    |                           |                                               | To select a range of values using Slider<br>and explore differences between ScrollBar<br>and Slider    |
|         |    |                           |                                               | To develop a tic-tac-toe game                                                                          |
|         |    |                           |                                               | To view and play video and audio using the Media, MediaPlayer, and MediaView                           |
|         |    |                           |                                               | To develop a case study for showing the national flag and playing anthem                               |
| 13      | 3  | Binary I/O                | How is text I/O handled in                    | To discover how I/O is processed in Java                                                               |
|         |    |                           | Java?                                         | To distinguish between text I/O and binary                                                             |
|         |    |                           | Text I/O vs. binary I/O<br>Binary I/O classes | I/O<br>To read and write bytes using                                                                   |
|         |    |                           | Dinary I/O Classes                            | TO TEAU AND WHILE DYLES USING                                                                          |

|    |   |                         | Case study: Copying files                                              | FileInputStream and FileOutputStream                                                            |
|----|---|-------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|    |   |                         | Object I/O                                                             | To filter data using the base classes<br>FilterInputStream and FilterOutputStream               |
|    |   |                         | Random-access files<br>Programming exercises<br>Programming assignment | To read and write primitive values and<br>strings using DataInputStream and<br>DataOutputStream |
|    |   |                         |                                                                        | To improve I/O performance by using<br>BufferedInputStream and<br>BufferedOutputStream          |
|    |   |                         |                                                                        | To write a program that copies a file                                                           |
|    |   |                         |                                                                        | To store and restore objects using<br>ObjectOutputStream and<br>ObjectInputStream               |
|    |   |                         |                                                                        | To implement the Serializable interface to make objects serializable                            |
|    |   |                         |                                                                        | To serialize arrays                                                                             |
|    |   |                         |                                                                        | To read and write files using the<br>RandomAccessFile class                                     |
| 14 | 3 | Software                | Software unit testing.                                                 | To understand what is unit testing.                                                             |
|    |   | Testing with            | JUnit test                                                             | To learn how to use JUnit test                                                                  |
|    |   | JUnit                   | Metods of assertions                                                   | To learn how to validate assertions.                                                            |
|    |   |                         | validation                                                             | To learn how to test aggregations.                                                              |
|    |   |                         | Testing of aggregations.<br>Pameters in testing.                       | To understand what are parameters in testing.                                                   |
|    |   |                         | Testing of exceptions.                                                 | To learn how to test exceptions.                                                                |
|    |   |                         | Use of @Rule                                                           | To learn to use @Rule.                                                                          |
|    |   |                         | Programming exercises                                                  |                                                                                                 |
|    |   |                         | Programming assignment                                                 |                                                                                                 |
| 15 | 3 | F2F Project             | Distribution of projects<br>assignments                                | To learn how to specify a project                                                               |
|    |   | Workshop<br>(in BMU     | Students work on their                                                 | To learn how to organize the project and to<br>break-down tasks                                 |
|    |   | (in BMU<br>computer     | project tasks with<br>assistance of instructors                        | To implement acquired knowledge during                                                          |
|    |   | rooms,                  |                                                                        | the course                                                                                      |
|    |   | optionally -<br>online) |                                                                        |                                                                                                 |
| 16 | 3 |                         | Students work on their                                                 | To develop necessary Java programs                                                              |
| 10 | 3 | F2F Project<br>Workshop | project tasks with                                                     | To realize all programming tasks of                                                             |
|    |   | (in BMU                 | assistance of instructors                                              | students' project.                                                                              |
|    |   | computer                |                                                                        | Presentation of the project report                                                              |
|    |   | rooms,                  |                                                                        |                                                                                                 |
|    |   | optionally -<br>online) |                                                                        |                                                                                                 |
| 17 | 3 | Final                   | Students get examination questions and problems                        | To evaluate knowledge and skills acquired during the course                                     |

|  | examination         | Exam duration - 3 hours |  |
|--|---------------------|-------------------------|--|
|  | (in BMU<br>computer |                         |  |
|  | rooms)              |                         |  |

### 3.2.6 Course 6: Java 4: Data Structures and Algorithms – Part A

Duration: 17 days, 14 online teaching days, 2 day workshop days, 4 ECTS Number of hours: 3 hours per online/workshop day, Total: 45 hours

| Day | Ho-<br>urs | Teaching<br>units         | Topics                                                                                                                                                                                                                                                                                                                                            | Objectives – knowledge or skills that the student should receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2 | 6          | Recursion                 | Recursion Definition,<br>Case Study: Computing<br>Factorials,<br>Case Study: Computing<br>Fibonacci Numbers,<br>Problem Solving Using<br>Recursion,<br>Recursive Helper Methods.<br>Case Study: Tower of<br>Hanoi,<br>Recursion vs. Iteration,<br>Tail Recursion.<br>Programming exercises<br>Programming assignment                              | To describe what a recursive method is<br>and the benefits of usingrecursion<br>To develop recursive methods for<br>recursive mathematical functions<br>To explain how recursive method calls are<br>handled in a call stack<br>To solve problems using recursion<br>To use an overloaded helper method to<br>design a recursive method<br>To implement a selection sort using<br>recursion<br>To implement a binary search using<br>recursion<br>To get the directory size using recursion<br>To solve the Tower of Hanoi problem using<br>recursion<br>To draw fractals using recursion<br>To discover the relationship and difference<br>between recursion and iteration<br>To know tail-recursive methods and why |
| 3,4 | 6          | Generics                  | Motivations and benefits<br>Defining generic classes<br>and interfaces<br>Generic methods<br>Case study: sorting an<br>array of objects<br>Raw types and backward<br>compatibility<br>Wildcard generic types<br>Erasure and restrictions on<br>generics<br>Case study: generic matrix<br>class<br>Programming exercises<br>Programming assignment | To define generic classes and interfaces<br>To explain why generic types can improve<br>reliability and readability<br>To define and use generic methods and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5,6 | 6          | List, Stack,<br>Queue and |                                                                                                                                                                                                                                                                                                                                                   | To explore the relationship between<br>interfaces and classes in the Java<br>Collections Framework hierarchy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|     |   | PriorityQueue |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|---|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |   | ThomyQueue    | Lists,                                                                                                                                                                                                                    | To use the common methods defined in the Collection interface for operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |   |               | The Comparator Interface,                                                                                                                                                                                                 | collections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |   |               | Static Methods for Lists and Collections                                                                                                                                                                                  | elements in a collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |               | Case Study: Bouncing Balls,                                                                                                                                                                                               | To use a foreach loop to traverse the<br>elements in a collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |   |               | Vector and Stack Classes                                                                                                                                                                                                  | To explore how and when to use ArrayList                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |               | Programming exercises                                                                                                                                                                                                     | or LinkedList to store a list of elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |   |               | Programming assignment                                                                                                                                                                                                    | To compare elements using the<br>Comparable interface and the Comparator<br>interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |   |               |                                                                                                                                                                                                                           | To use the static utility methods in the<br>Collections class for sorting, searching,<br>shuffling lists, and finding the largest and<br>smallest element in collections                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |               |                                                                                                                                                                                                                           | To develop a multiple bouncing balls<br>application using ArrayList                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |   |               |                                                                                                                                                                                                                           | To distinguish between Vector and<br>ArrayList and to use the Stack class for<br>creating stacks                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |   |               |                                                                                                                                                                                                                           | To explore the relationships among<br>Collection, Queue, LinkedList, and<br>PriorityQueue and to create priority queues<br>using the PriorityQueue class                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |   |               |                                                                                                                                                                                                                           | To use stacks to write a program to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |   |               |                                                                                                                                                                                                                           | evaluate expressions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7,8 | 6 | Set and Map   | Sets,                                                                                                                                                                                                                     | To store unordered, nonduplicate elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,                                                                                                                                                                        | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet<br>LinkedHashSet or TreeSet to store a set of                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,<br>Case study: counting<br>keywords                                                                                                                                    | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,<br>Case study: counting<br>keywords<br>Maps.                                                                                                                           | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet<br>LinkedHashSet or TreeSet to store a set of<br>elements.<br>To compare the performance of sets and<br>lists<br>To use sets to develop a program that                                                                                                                                                                                                                                                                                                             |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,<br>Case study: counting<br>keywords                                                                                                                                    | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet<br>LinkedHashSet or TreeSet to store a set of<br>elements.<br>To compare the performance of sets and<br>lists<br>To use sets to develop a program that<br>counts the keywords in a Java source file                                                                                                                                                                                                                                                                |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,<br>Case study: counting<br>keywords<br>Maps.<br>Case study: Occurrences                                                                                                | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet<br>LinkedHashSet or TreeSet to store a set of<br>elements.<br>To compare the performance of sets and<br>lists<br>To use sets to develop a program that                                                                                                                                                                                                                                                                                                             |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,<br>Case study: counting<br>keywords<br>Maps.<br>Case study: Occurrences<br>of words,<br>Singleton and<br>Unmodifiable Collections<br>and Maps<br>Programming exercises | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet<br>LinkedHashSet or TreeSet to store a set of<br>elements.<br>To compare the performance of sets and<br>lists<br>To use sets to develop a program that<br>counts the keywords in a Java source file<br>To tell the differences between Collection<br>and Map and describe when and how to<br>use HashMap, LinkedHashMap, or<br>TreeMap to store values associated with<br>keys                                                                                     |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,<br>Case study: counting<br>keywords<br>Maps.<br>Case study: Occurrences<br>of words,<br>Singleton and<br>Unmodifiable Collections<br>and Maps                          | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet<br>LinkedHashSet or TreeSet to store a set of<br>elements.<br>To compare the performance of sets and<br>lists<br>To use sets to develop a program that<br>counts the keywords in a Java source file<br>To tell the differences between Collection<br>and Map and describe when and how to<br>use HashMap, LinkedHashMap, or<br>TreeMap to store values associated with                                                                                             |
| 7,8 | 6 | Set and Map   | Comparing the<br>performance of Sets and<br>Lists,<br>Case study: counting<br>keywords<br>Maps.<br>Case study: Occurrences<br>of words,<br>Singleton and<br>Unmodifiable Collections<br>and Maps<br>Programming exercises | To store unordered, nonduplicate elements<br>using a set<br>To explore how and when to use HashSet<br>LinkedHashSet or TreeSet to store a set of<br>elements.<br>To compare the performance of sets and<br>lists<br>To use sets to develop a program that<br>counts the keywords in a Java source file<br>To tell the differences between Collection<br>and Map and describe when and how to<br>use HashMap, LinkedHashMap, or<br>TreeMap to store values associated with<br>keys<br>To use maps to develop a program that<br>counts the occurrence of the words in a |

|   | 10       |   | Efficient   | efficiency using big o                                    | Big O notation                                                                                                     |
|---|----------|---|-------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|   | _        |   | Algorithms  | notation                                                  | To explain growth rates and why constants                                                                          |
|   | 11<br>12 |   |             | Examples: determining big<br>O                            | and nondominating terms can be ignored in the estimation                                                           |
|   |          |   |             | Analyzing algorithm time complexity                       | To determine the complexity of various types of algorithms).                                                       |
|   |          |   |             | Finding Fibonacci numbers                                 |                                                                                                                    |
|   |          |   |             | using dynamic<br>programming                              | To analyze the selection sort algorithm                                                                            |
|   |          |   |             | Finding greatest common                                   | To analyze the Tower of Hanoi algorithm                                                                            |
|   |          |   |             | divisors using Euclid's algorithm                         | (constant, logarithmic, loglinear, quadratic,                                                                      |
|   |          |   |             | Efficient algorithms for<br>finding prime numbers         | To design efficient algorithms for finding                                                                         |
|   |          |   |             | Finding the closest pair of points using divide-and-      | Fibonacci numbers using dynamic                                                                                    |
|   |          |   |             | conquer                                                   | To find the GCD using Euclid's algorithm                                                                           |
|   |          |   |             | Solving the eight queens<br>problem using<br>backtracking |                                                                                                                    |
|   |          |   |             | Computational geometry:<br>finding a convex hull          | To design efficient algorithms for finding<br>the closest pair of points using the divide-<br>and-conquer approach |
|   |          |   |             | Programming exercises                                     | To solve the Eight Queens problem using                                                                            |
|   |          |   |             | Programming assignment                                    | the backtracking approach<br>To design efficient algorithms for finding a                                          |
|   |          |   |             |                                                           | convex hull for a set of                                                                                           |
| _ |          |   |             |                                                           | points                                                                                                             |
|   | 13       | 6 | Sorting     | Insertion Sort                                            | To study and analyze time complexity of                                                                            |
|   | 14       |   |             | Bubble Sort                                               | various sorting algorithms<br>To design, implement, and analyze                                                    |
|   |          |   |             | Merge Sort                                                | To design, implement, and analyze<br>insertion sort                                                                |
|   |          |   |             | Quick Sort                                                | To design, implement, and analyze bubble                                                                           |
|   |          |   |             | Heap Sort                                                 | sort                                                                                                               |
|   |          |   |             | Bucket Sort and Radix Sort                                | To design, implement, and analyze merge sort                                                                       |
|   |          |   |             | External Sort                                             | To design, implement, and analyze quick                                                                            |
|   |          |   |             | Programming exercises<br>Programming assignment           | sort                                                                                                               |
|   |          |   |             |                                                           | To design and implement a binary heap                                                                              |
|   |          |   |             |                                                           | To design, implement, and analyze heap sort                                                                        |
|   |          |   |             |                                                           | To design, implement, and analyze bucket sort and radix sort                                                       |
|   |          |   |             |                                                           | To design, implement, and analyze external sort for files that have a large amount of data                         |
|   | 15       | 3 | F2F Project | Distribution of projects                                  | To learn how to specify a project                                                                                  |
|   |          |   | Workshop    | assignments<br>Students work on their                     | To learn how to organize the project and to                                                                        |
|   |          |   |             | Students work on their                                    | break-down tasks                                                                                                   |

|    |   | computer<br>rooms,<br>optionally -<br>online)                                       | project tasks with assistance of instructors                                  | To implement acquired knowledge during the course                                                                                     |
|----|---|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 16 | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | Students work on their<br>project tasks with<br>assistance of instructors     | To develop necessary Java programs<br>To realize all programming tasks of<br>students' project.<br>Presentation of the project report |
| 17 | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms)                               | Students get examination<br>questions and problems<br>Exam duration - 3 hours | To evaluate knowledge and skills acquired during the course                                                                           |

### 3.2.7 Course 7: Java 5: Data Structures and Algorithms – Part B

Duration: 16 days, 13 online teaching days, 2 day workshop days, 4 ECTS Number of hours: 3 hours per online/workshop day, Total: 45 hours

| Day | Ho-<br>urs | Teaching<br>units                         | Topics                                                                                                                                                                                     | Objectives – knowledge or skills that the student should receive                                                                                                                                             |
|-----|------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2 | 6          | Implementing<br>Lists, Stacks,<br>Queues, | Common Features for Lists<br>Array Lists<br>Linked Lists                                                                                                                                   | To design common features of lists in an interface and provide skeleton implementation in a convenience abstract class                                                                                       |
|     |            | and Priority<br>Queues                    | Stacks and Queues<br>Priority Queues<br>Programming exercises                                                                                                                              | To design and implement an array list<br>using an array<br>To design and implement a linked list using                                                                                                       |
|     |            |                                           | Programming assignment                                                                                                                                                                     | a linked structure<br>To design and implement a stack class<br>using an array list and a queue class using<br>a linked list                                                                                  |
|     |            |                                           |                                                                                                                                                                                            | To design and implement a priority queue using a heap                                                                                                                                                        |
| 3,4 | 6          | Binary<br>Search Trees                    | Binary search srees<br>Deleting elements from a<br>BST<br>Tree visualization and<br>MVC<br>Iterators<br>Case study: data<br>compression<br>Programming exercises<br>Programming assignment | To design and implement a binary search<br>tree<br>To represent binary trees using linked data<br>structures<br>To search an element in a binary search<br>tree<br>To insert an element into a binary search |

| 5,6 | 6 | AVL Trees | Rebalancing Trees                                                                                                                                                                                                                                                                                                           | To know what an AVL tree is                                                                                                                                                                                                                                                                                                                                                |
|-----|---|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5,0 | 0 | AVE HEES  | Designing Classes for AVL<br>Trees<br>Overriding the insert<br>Method<br>Implementing Rotations<br>Implementing the delete<br>Method<br>The AVLTree Class<br>Testing the AVLTree Class<br>AVL Tree Time Complexity<br>Analysis<br>Programming exercises<br>Programming assignment                                           | To understand how to rebalance a tree<br>using the LL rotation, LR rotation, RR<br>rotation, and RL rotation<br>To design the AVLTree class by extending<br>the BST class<br>To insert elements into an AVL tree<br>To implement tree rebalancing<br>To delete elements from an AVL tree<br>To implement the AVLTree class                                                 |
| 7,8 | 6 | Hashing   | What Is Hashing?<br>Hash Functions and<br>Hash Codes<br>Handling Collisions<br>Using Open<br>Addressing<br>Handling Collisions<br>Using Separate<br>Chaining<br>Load Factor and<br>Rehashing<br>Implementing a Map<br>Using Hashing<br>Implementing Set<br>Using Hashing<br>Programming exercises<br>Programming assignment | To obtain the hash code for an<br>object and design the hash function<br>to map a key to an index<br>To handle collisions using open<br>addressing<br>To know the differences among<br>linear probing, quadratic probing,<br>and double hashing (§27.4).<br>To handle collisions using separate<br>chaining<br>To understand the load factor and<br>the need for reheating |

| 9<br>10<br>11 | 9 | Graphs and<br>Applications                              | Basic Graph Terminologies<br>Representing Graphs<br>Modeling Graphs<br>Graph Visualization<br>Graph Traversals<br>Depth-First Search (DFS)<br>Case Study: The<br>Connected Circles<br>Problem                | matrices, and adjacency lists                                                                                                                                                            |
|---------------|---|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |   |                                                         | Breadth-First Search<br>(BFS)<br>Case Study: The Nine<br>Tails Problem<br>Programming exercises<br>Programming assignment                                                                                    | UnweightedGraph class                                                                                                                                                                    |
|               |   |                                                         |                                                                                                                                                                                                              | To solve the connected-circle problem<br>using depth-first search<br>To design and implement breadth-first<br>search<br>To solve the nine-tail problem using<br>breadth-first search     |
| 12<br>13      | 6 | Weighted<br>Graphs and<br>Applications                  | Representing Weighted<br>Graphs WeightedGraph Class<br>Minimum Spanning Trees<br>Finding Shortest Paths<br>Case Study: The Weighted<br>Nine Tails Problem<br>Programming exercises<br>Programming assignment | adjacency matrices and adjacency lists<br>To model weighted graphs using the<br>WeightedGraph class that extends the<br>AbstractGraph class<br>To design and implement the algorithm for |
| 13            | 3 | F2FProjectWorkshop(inBMUcomputerrooms,optionallyonline) | Distribution of projects<br>assignments<br>Students work on their<br>project tasks with<br>assistance of instructors                                                                                         | To learn how to organize the project and to                                                                                                                                              |

| 14 | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | Students work on their<br>project tasks with<br>assistance of instructors     | To develop necessary Java programs<br>To realize all programming tasks of<br>students' project.<br>Presentation of the project report |
|----|---|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 15 | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms)                               | Students get examination<br>questions and problems<br>Exam duration - 3 hours | To evaluate knowledge and skills acquired during the course                                                                           |

#### 3.2.8 Course 8: Java 6: Java ME

Duration: 14 days, 11 online teaching days, 2 day workshop days, 4 ECTS

| Day | Ho-<br>urs | Teaching<br>units                                     | Topics                                                                                                                                                                             | Objectives – knowledge or skills that<br>the student should receive |
|-----|------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 1   | 3          | Introduction<br>to Java ME<br>platform                | Configurations, Profiles,<br>Packages<br>CLDC<br>CDC<br>Java Class Library to Fit<br>the CLDC<br>Creating CLDC/MIDP<br>Application using NetBean<br>Creating CDC Application       |                                                                     |
| 2,3 | 6          | CLDC<br>Development<br>with MIDP                      | Introducing MIDlets.<br>Building User Interfaces<br>Storing Data Using the<br>Record Store<br>Using the Java Mobile<br>Game API                                                    |                                                                     |
| 4   | 3          | CDC<br>Development                                    | Introducing Xlets and the<br>Personal Basis Profile<br>Introducing Applets and<br>the Advanced Graphics<br>and User Interface<br>Using Remote Method<br>Invocation                 |                                                                     |
| 5   | 3          | Accessing<br>Remote Data<br>on the<br>Network         | Generic Connection<br>Framework (GCF)<br>Communicating with<br>Sockets and Datagrams<br>Communicating with HTTP                                                                    |                                                                     |
| 6   | 3          | Accessing<br>Web Services                             | Looking at a Web Service<br>from the Client Perspective<br>Exploring XML Support for<br>Web Services in Java ME                                                                    |                                                                     |
| 7   | 3          | Messaging<br>with the<br>Wireless<br>Messaging<br>API | Using the Push Registry<br>Applying the Wireless<br>Messaging API                                                                                                                  |                                                                     |
| 8   | 3          | Securing<br>Java ME<br>Applications                   | Java ME's Security and<br>Trust Services<br>Exploring the Bouncy<br>Castle Solution to Security<br>Challenges<br>Creating Secure<br>Commerce with<br>Contactless<br>Communications |                                                                     |

# Number of hours: 3 hours per online/workshop day, Total: 39 hours

|    |   |              | Interaction of the CARAADI                      |                                                                 |
|----|---|--------------|-------------------------------------------------|-----------------------------------------------------------------|
| 9  | 3 | Rendering    | Introducing the MMAPI<br>Introducing the Java   |                                                                 |
|    |   | Multimedia   | Scalable 2D Vector                              |                                                                 |
|    |   | Content      | Graphics API                                    |                                                                 |
|    |   |              | Putting the MMAPI and the                       |                                                                 |
|    |   |              | SVGAPI to Work                                  |                                                                 |
| 10 | 3 | Using        | Introducing the MMAPI                           |                                                                 |
| 10 | U | Locations    | Introducing the Java                            |                                                                 |
|    |   | Locations    | Scalable 2D Vector<br>Graphics API              |                                                                 |
|    |   |              | Putting the MMAPI and the                       |                                                                 |
|    |   |              | SVGAPI to Work                                  |                                                                 |
|    |   |              | Understanding the Role                          |                                                                 |
| 11 | 3 | Seeking a    | JSRs Play in                                    |                                                                 |
|    |   | Common       | Fragmentation                                   |                                                                 |
|    |   | Platform     | Understanding the JTWI                          |                                                                 |
|    |   |              | Understanding the MSA                           |                                                                 |
| 12 | 3 | F2F Project  | Distribution of projects                        | To learn how to specify a project                               |
| 12 | 5 | Workshop     | assignments                                     |                                                                 |
|    |   | -            | Students work on their                          | To learn how to organize the project and to<br>break-down tasks |
|    |   | (in BMU      | project tasks with                              |                                                                 |
|    |   | computer     | assistance of instructors                       | To implement acquired knowledge during                          |
|    |   | rooms,       |                                                 | the course                                                      |
|    |   | optionally - |                                                 |                                                                 |
|    |   | online)      |                                                 |                                                                 |
|    |   | ,            |                                                 |                                                                 |
| 13 | 3 | F2F Project  | Students work on their                          | To develop necessary Java programs                              |
|    |   | Workshop     | project tasks with<br>assistance of instructors | To realize all programming tasks of                             |
|    |   | (in BMU      | assistance of instructors                       | students' project.                                              |
|    |   | computer     |                                                 | Presentation of the project report                              |
|    |   |              |                                                 |                                                                 |
|    |   | rooms,       |                                                 |                                                                 |
|    |   | optionally - |                                                 |                                                                 |
|    |   | online)      |                                                 |                                                                 |
| 15 | 3 | Final        | Students get examination                        |                                                                 |
|    |   | 6examination | questions and problems                          | during the course                                               |
|    |   |              | Exam duration - 3 hours                         |                                                                 |
|    |   | (in BMU      |                                                 |                                                                 |
|    |   | computer     |                                                 |                                                                 |
|    |   | rooms)       |                                                 |                                                                 |

Reference: Beginning Java™ ME Platform, Ray Rischpater, Apress, Inc., 2008

### 3.2.9 Course 9: Java 7: Advanced Java Programming

Duration: 15 days, 12 online teaching days, 2 day workshop days, 4 ECTS Number of hours: 3 hours per online/workshop day, Total: 42 hours

| Day   | Ho-<br>urs | Teaching<br>units             | Topics                        | Objectives – knowledge or skills that the student should receive                                                                                                                                                                                                                                                                                    |
|-------|------------|-------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | 12         | Multithreadin                 | Thread Concepts               | To get an overview of multithreading                                                                                                                                                                                                                                                                                                                |
| 2     |            | g and Parallel<br>Programming | Creating Tasks and<br>Threads | To develop task classes by implementing the Runnable interface                                                                                                                                                                                                                                                                                      |
| 2 3 4 |            | •                             |                               | the Runnable interface<br>To create threads to run tasks using the<br>Thread class<br>To control threads using the methods in<br>the Thread class<br>To control animations using threads and<br>use Platform.runLater to run the code in<br>the application thread<br>To execute tasks in a thread pool<br>To use synchronized methods or blocks to |
|       |            |                               |                               | To develop parallel programs using the<br>Fork/Join Framework                                                                                                                                                                                                                                                                                       |

٦
| 5,6     | 6 | Network<br>programming            | Client/Server Computing<br>The InetAddress Class<br>Serving Multiple Clients<br>Sending and Receiving<br>Objects<br>Case Study: Distributed<br>Tic-Tac-Toe Games<br>Programming exercises<br>Programming assignment |                                                                                                                                                                                                                                                                                                                                                              |
|---------|---|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7,8     | 6 | Database<br>programming<br>(JDBC) | Relational Database<br>Systems Database<br>SQL<br>JDBC<br>PreparedStatement<br>CallableStatement,<br>Retrieving Metadata<br>Programming exercises<br>Programming assignment                                         | Understanding relational databases<br>concept and RDBMS systems.<br>Understanding the relational model,<br>relational data structure, restrictions<br>and language.<br>SQL use in working with relational<br>databases. Set up and usage of<br>JDBC.<br>Application of memorized SQL<br>procedures and functions.<br>Work with metadata about a<br>database. |
| 9<br>10 | 6 | Java<br>Persistence<br>API        | Entity Relations,<br>Automated generation of<br>JPA entities<br>Programming exercises<br>Programming assignment                                                                                                     | Understanding ORM and complete mastery of the application of ORM tools in working with databases.                                                                                                                                                                                                                                                            |

| 11<br>12 | 6 | Java<br>Hibernate<br>ORM                                                            | Hibernate ORM –<br>Mapping objects in<br>database<br>Example of creation of a<br>persistent class<br>Hibernate Annotations<br>Hibernate Query<br>Language - HQL<br>Criteria of selection of<br>objects in HQL query<br>Using SQL in Hibernate<br>environment<br>Hibernate cashing<br>Hibernate batch<br>processing<br>Hibernate interceptors<br>Programming exercises<br>Programming<br>assignment | To implement Java Hibernate ORM<br>in Java applications.                                                                                                     |
|----------|---|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13       | 3 | F2FProjectWorkshop(inBMUcomputerrooms,optionallyonline)                             | Distribution of projects<br>assignments<br>Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                                                                                                                               | To learn how to specify a project<br>To learn how to organize the project and to<br>break-down tasks<br>To implement acquired knowledge during<br>the course |
| 14       | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                                                                                                                                                                          | To develop necessary Java programs<br>To realize all programming tasks of<br>students' project.<br>Presentation of the project report                        |
| 15       | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms)                               | Students get examination<br>questions and problems<br>Exam duration - 3 hours                                                                                                                                                                                                                                                                                                                      | To evaluate knowledge and skills acquired during the course                                                                                                  |

#### 3.2.10 Course 10: Java 8: Java Enterprise Edition

Duration: 24 days, 21 online teaching days, 2 day workshop days, 7 ECTS Number of hours: 3 hours per online/workshop day, Total: 69 hours

| Da               | ay     | Ho-<br>urs | Teaching<br>units          | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Objectives – knowledge or skills that the student should receive                                                                                                                                                                                                                     |
|------------------|--------|------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                |        | 6          | Java EE -<br>Servlets      | Java EE Platform<br>Introduction to Servlets<br>Creating and Deploying<br>Servlets<br>Data Flow<br>Servlet and Sessions<br>GlassFish Server<br>Programming exercises                                                                                                                                                                                                                                                                                                                      | To understand the concept of distributed<br>systems and Java Enterprise Edition<br>platform basics.<br>Ability to create and use servelts in Java<br>enterprise applications.                                                                                                        |
| 3<br>4<br>5<br>6 | +<br>5 | 12         | Java Server<br>Pages (JSP) | Programming assignment<br>JSP Architecture<br>JSP Life Cycle<br>JSP Syntax<br>JSP Directives<br>JSP Actions<br>JSP Actions<br>JSP Imlicit Objects<br>Form Processing<br>JSP Filters<br>Cookies Handling in JSP<br>File Upload in JSP<br>Date Handling in JSP<br>Redirection in JSP<br>JSTL - JavaServer Pages<br>Standard Tag Library<br>JSP - Databases<br>JSP - JavaBean<br>JSP – Expression<br>Language<br>JSP Internationalization<br>Programming exercises<br>Programming assignment | Using JavaServer Pages (JSP), web<br>pages' development technologies<br>supporinng dynamic content application,<br>and enabling Java code insertion into<br>HTML documents.<br>Mastering the advanced concept of<br>application principles of JSP pages in<br>JAVA web applications. |

\_

| 7<br>8<br>9<br>10 | 12 | Java Server<br>Faces (JSF)                                                        | Introduction to JavaServer<br>Faces<br>Forms in JSF<br>Creating CDI named bean,<br>Implementing the<br>confirmation page,<br>JSF Validation.<br>Facelets templating,<br>Resource library contracts,<br>PrimeFaces Component<br>Library,<br><u>ICEFaces</u> Component<br>Library,<br>RichFaces Component<br>Library<br>Programming exercises<br>Programming assignment | application development. Developing<br>advanced JSF applications, with simplified<br>approach through application of JSF<br>component libraries. |
|-------------------|----|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 12             | 6  | <u>RESTFul</u><br><u>Web</u><br><u>Services</u><br><u>with JAX –</u><br><u>RS</u> | Generating a RESTful web<br>service from an existing<br>database<br>Testing RESTful web<br>service<br>Generating RESTful Java<br>client code<br>Generating RESTful<br>JavaScript clients<br>for our RESTful web<br>services<br>Programming exercises<br>Programming assignment                                                                                        | Services with JAX – RS.                                                                                                                          |
| 13<br>14          | 6  | Context and<br>Dependency<br>Injection                                            |                                                                                                                                                                                                                                                                                                                                                                       | Understanding and use of CDI concepts<br>and techniques in Java EE applications.                                                                 |

| 15       | 6 | JMS and                   | Introduction to JMS,                                                        | Understanding and use of Java Messaging                         |
|----------|---|---------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|
| 16       |   | Message                   | Creating JMS resources,                                                     | System and message driven beans in Java<br>EE applications.     |
|          |   | Driven Beans              | Implementing a JMS message producer,                                        |                                                                 |
|          |   |                           | Consuming JMS<br>messages with message-<br>driven beans                     |                                                                 |
|          |   |                           | Programming exercises                                                       |                                                                 |
|          |   |                           | Programming assignment                                                      |                                                                 |
| 17<br>18 | 6 | Java API for<br>JSON      | JSON-P object model<br>API,                                                 | Understanding and use of Java EE mechanisms for JSON processing |
| 10       |   | processing                | Generating JSON data<br>with the JSON-P object                              |                                                                 |
|          |   |                           | model API ,                                                                 |                                                                 |
|          |   |                           | Parsing JSON data with the JSON-P object                                    |                                                                 |
|          |   |                           | model API ,                                                                 |                                                                 |
|          |   |                           | JSON-P streaming API,                                                       |                                                                 |
|          |   |                           | Generating JSON data with the JSON-P                                        |                                                                 |
|          |   |                           | streaming API,                                                              |                                                                 |
|          |   |                           | Parsing JSON data with<br>the JSON-P streaming<br>API                       |                                                                 |
|          |   |                           | Programming exercises                                                       |                                                                 |
|          |   |                           | Programming assignment                                                      |                                                                 |
| 19       | 3 | Java API for<br>WebSocket | Examining the<br>WebSocket code using<br>samples included with<br>NetBeans, | Competence to create individual WebSocket applications.         |
|          |   |                           | Echo Application,                                                           |                                                                 |
|          |   |                           | Examining the generated<br>Java code,Building our<br>own WebSocket          |                                                                 |
|          |   |                           | applications,                                                               |                                                                 |
|          |   |                           | Java EE, WebSocket, JS i<br>HTML 5 – Case Study                             |                                                                 |
|          |   |                           | Programming exercises                                                       |                                                                 |
|          |   |                           | Programming assignment                                                      |                                                                 |

| 20<br>21 | 6 | Implementing<br>the Business<br>Tier with<br>Session<br>Beans                       | Introducing session beans<br>Creating a session bean,<br>Accessing the bean from a<br>client,<br>Session bean transaction<br>management<br>Implementing aspect-<br>oriented programming<br>with interceptors<br>EJB Timer servis<br>Generating session beans<br>from JPA entities<br>Programming exercises<br>Programming assignment | To implement Session beans in Java EE applications.                                                                                                          |
|----------|---|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22       | 3 | F2FProjectWorkshop(inBMUcomputerrooms,optionallyonline)                             | Distribution of projects<br>assignments<br>Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                                                                 | To learn how to specify a project<br>To learn how to organize the project and to<br>break-down tasks<br>To implement acquired knowledge during<br>the course |
| 23       | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                                                                                                            | To develop necessary Java programs<br>To realize all programming tasks of<br>students' project.<br>Presentation of the project report                        |
| 24       | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms)                               | Students get examination<br>questions and problems<br>Exam duration - 3 hours                                                                                                                                                                                                                                                        | To evaluate knowledge and skills acquired during the course                                                                                                  |

# 3.2.11 Course 11: Software Development Process and Methodologies

Duration: 18 days, 15 online teaching days, 2 day workshop days, 5 ECTS

| Day | Ho-<br>urs | Teaching<br>units     | Topics                                          | Objectives – knowledge or skills that the student should receive           |
|-----|------------|-----------------------|-------------------------------------------------|----------------------------------------------------------------------------|
| 1   | 3          | Introduction          | Professional software development               | To understand what software engineering is and why it is important;        |
|     |            |                       | Software engineering ethics                     | To understand that the development of different types of software          |
|     |            |                       | Case studies                                    | systems may require different software engineering techniques;             |
|     |            |                       | Programming exercises<br>Programming assignment | To understand some ethical and professional issues that are important      |
|     |            |                       |                                                 | for software engineers;                                                    |
|     |            |                       |                                                 | To have been introduced to three systems, of different types, that will be |
|     |            |                       |                                                 | used as examples throughout the book.                                      |
| 2   | 6          | Software<br>Processes | Software process models<br>Process activities   | To understand the concepts of software processes and software process      |
| 3   |            |                       | Coping with change                              | models;                                                                    |
|     |            |                       | The Rational Unified<br>Process                 | To have been introduced to three generic software process models and       |
|     |            |                       | Programming exercises                           | when they might be used;                                                   |
|     |            |                       | Programming assignment                          | To know about the fundamental process activities of software               |
|     |            |                       |                                                 | requirements engineering, software development, testing, and               |
|     |            |                       |                                                 | evolution;                                                                 |
|     |            |                       |                                                 | To understand why processes should be organized to cope with changes       |
|     |            |                       |                                                 | in the software requirements and design;                                   |
|     |            |                       |                                                 | To understand how the Rational Unified<br>Process integrates good software |
|     |            |                       |                                                 | engineering practice to create adaptable software processes.               |

#### Number of hours: 3 hours per online/workshop day, Total: 21 hours

| 45 | 6 | Agile<br>Software<br>Development | Agile methods<br>Plan-driven and agile<br>development<br>Extreme programming<br>Agile project management<br>Scaling agile methods<br>Programming exercises<br>Programming assignment | agile and plan-driven<br>development;<br>To know the key practices in extreme<br>programming and how these relate to the<br>general principles of agile methods;<br>To understand the Scrum approach to<br>agile project management;<br>To be aware of the issues and problems of |
|----|---|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | 6 | Requirement                      | Functional and non-                                                                                                                                                                  | scaling agile development methods to the development of large software systems.<br>To understand the concepts of user and                                                                                                                                                         |
| 7  | 0 | s s                              | functional requirements                                                                                                                                                              | system requirements and                                                                                                                                                                                                                                                           |
| 1  |   | engineering                      | The software requirements document                                                                                                                                                   | why these requirements should be written in different ways;                                                                                                                                                                                                                       |
|    |   |                                  | Requirements specification                                                                                                                                                           | To understand the differences between<br>functional and nonfunctional                                                                                                                                                                                                             |
|    |   |                                  | Requirements engineering processes                                                                                                                                                   | software requirements;                                                                                                                                                                                                                                                            |
|    |   |                                  | Requirements elicitation and analysis                                                                                                                                                | To understand how requirements may be organized in a software                                                                                                                                                                                                                     |
|    |   |                                  | Requirements validation                                                                                                                                                              | requirements document;                                                                                                                                                                                                                                                            |
|    |   |                                  | Requirements management                                                                                                                                                              | To understand the principal requirements engineering activities of                                                                                                                                                                                                                |
|    |   |                                  | Programming exercises                                                                                                                                                                | elicitation, analysis and validation, and the relationships between                                                                                                                                                                                                               |
|    |   |                                  | Programming assignment                                                                                                                                                               | these activities;                                                                                                                                                                                                                                                                 |
|    |   |                                  |                                                                                                                                                                                      | To understand why requirements management is necessary and how                                                                                                                                                                                                                    |
|    |   |                                  |                                                                                                                                                                                      | it supports other requirements engineering activities                                                                                                                                                                                                                             |

| 89 | 6 | System<br>modeling      | Context models<br>Interaction models<br>Structural models<br>Behavioral models<br>Model-driven engineering<br>Programming exercises<br>Programming assignment      | To understand how graphical models can<br>be used to represent<br>software systems;<br>To understand why different types of<br>model are required and the<br>fundamental system modeling<br>perspectives of context, interaction,<br>structure, and behavior;<br>To have been introduced to some of the<br>diagram types in the Unified<br>Modeling Language (UML) and how these<br>diagrams may be used in<br>system modeling;<br>To be aware of the ideas underlying<br>model-driven engineering, where a<br>system is automatically generated from<br>structural and behavioral<br>models. |
|----|---|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 3 | Architectural<br>design | Architectural design<br>decisions<br>Architectural views<br>Architectural patterns<br>Application architectures<br>Programming exercises<br>Programming assignment | To understand why the architectural design<br>of software is important;<br>To understand the decisions that have to<br>be made about the system<br>architecture during the architectural design<br>process;<br>To have been introduced to the idea of<br>architectural patterns, well-tried<br>ways of organizing system architectures,<br>which can be reused in<br>system designs;<br>To know the architectural patterns that are<br>often used in different types<br>of application system, including transaction<br>processing systems and<br>language processing systems.                |

| 11<br>12<br>13 | 9 | Design and            | Object-oriented design                                                                                                                                         | To understand the most important activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|---|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |   |                       | using the UML                                                                                                                                                  | in a general, objectoriented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 13             |   | implementati<br>on    | Design patterns                                                                                                                                                | design process;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |   |                       | Implementation issues<br>Open source development                                                                                                               | To understand some of the different models that may be used to                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |   |                       | Programming exercises                                                                                                                                          | document an object-oriented design;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                |   |                       | Programming assignment                                                                                                                                         | To know about the idea of design patterns and how these are a way                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |   |                       |                                                                                                                                                                | of reusing design knowledge and experience;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                |   |                       |                                                                                                                                                                | To have been introduced to key issues that have to be considered when                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |   |                       |                                                                                                                                                                | implementing software,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 14             | 3 | Software<br>testing   | Development testing<br>Test-driven development<br>Release testing<br>User testing<br>Programming exercises<br>Programming assignment                           | To understand the stages of testing from<br>testing, during development<br>to acceptance testing by system<br>customers;<br>To have been introduced to techniques<br>that help you choose test<br>cases that are geared to discovering<br>program defects;<br>To understand test-first development,<br>where you design tests before<br>writing code and run these tests<br>automatically;<br>To know the important differences between<br>component, system,<br>and release testing and be aware of user<br>testing processes and       |
| 15             | 3 | Software<br>evolution | Evolution processes<br>Program evolution<br>dynamics<br>Software maintenance<br>Legacy system<br>management<br>Programming exercises<br>Programming assignment | techniques.To understand that change is inevitable if<br>software systems are to remain useful and<br>that software development and evolution<br>may be integrated in a spiral model;To understand software evolution<br>processes and influences on theseprocesses;To have learned about different types of<br>software maintenance and<br>the factors that affect maintenance costs;<br>andTo understand how legacy systems can be<br>assessed to decide whether they should<br>be scrapped, maintained, reengineered,<br>or replaced. |

| 16 | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | assignments                                                                   |                                                             |
|----|---|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------|
| 17 | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | project tasks with<br>assistance of instructors                               |                                                             |
| 18 | 3 | Final<br>examination<br>(in BMU<br>computer<br>rooms)                               | Students get examination<br>questions and problems<br>Exam duration - 3 hours | To evaluate knowledge and skills acquired during the course |

#### 3.2.12 Course 12: Software Construction

Duration: 21 days, 18 online teaching days, 2 day workshop days, 6 ECTS

| Day         | Ho-<br>urs | Teaching<br>units                        | Topics                                                                                                                                                                                                                                                                            | Objectives – knowledge or skills that the student should receive                                                                 |
|-------------|------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2      | 6          | Software<br>Construction<br>Fundamentals | <ul> <li>1.1. Minimizing Complexity</li> <li>1.2. Anticipating Change</li> <li>1.3. Constructing for<br/>Verification</li> <li>1.4. Reuse</li> <li>1.5. Standards in<br/>Construction</li> </ul>                                                                                  | construction.                                                                                                                    |
| 3<br>4      | 6          | Managing<br>Construction                 | <ul><li>2.1. Construction in Life<br/>Cycle Models</li><li>2.2. Construction Planning</li><li>2.3. Construction<br/>Measurement</li></ul>                                                                                                                                         | construction.                                                                                                                    |
| 5<br>6<br>7 | 9          | Practical<br>Consideration<br>s          | <ul> <li>3.1. Construction Design</li> <li>3.2. Construction Languages</li> <li>3.3. Coding</li> <li>3.4. Construction Testing</li> <li>3.5. Construction for Reuse</li> <li>3.6. Construction with Reuse</li> <li>3.7. Construction Quality</li> <li>3.8. Integration</li> </ul> | software reusing, quality and insoftware integration                                                                             |
| 89          | 6          | Construction<br>Technologies             | <ul> <li>4.1. API Design and Use</li> <li>4.2. Object-Oriented<br/>Runtime Issues</li> <li>4.3. Parameterization and<br/>Generics</li> <li>4.4. Assertions, Design by<br/>Contract, and Defensive<br/>Programming</li> </ul>                                                      | To implement parameterization and generics<br>To implement assertions, design by contract and defensive programming              |
| 10<br>11    | 6          |                                          | <ul> <li>4.5. Error Handling,<br/>Exception Handling, and<br/>Fault Tolerance</li> <li>4.6. Executable Models</li> <li>4.7. State-Based and<br/>Table-Driven Construction<br/>Techniques</li> </ul>                                                                               | handling and fault tolerance<br>To use executable models<br>To implement state-based and table-driven<br>construction techniques |

## Number of hours: 3 hours per online/workshop day, Total: 60 hours

| 12<br>13 | 6 |                                                                                     | 4.8. Runtime Configuration and Internationalization                                                                                                                                                                                                  | To implement runtime configuration and internationalization                                                                                                  |
|----------|---|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13       |   |                                                                                     | 4.9. Grammar-Based Input<br>Processing                                                                                                                                                                                                               | To implement grammar-based input processing                                                                                                                  |
|          |   |                                                                                     | 4.10. Concurrency Primitives                                                                                                                                                                                                                         |                                                                                                                                                              |
|          |   |                                                                                     | 4.11. Middleware                                                                                                                                                                                                                                     | To implement middleware                                                                                                                                      |
| 14<br>15 | 6 |                                                                                     | <ul> <li>4.12. Construction<br/>Methods for Distributed<br/>Software</li> <li>4.13. Constructing<br/>Heterogeneous Systems</li> <li>4.14. Performance<br/>Analysis and Tuning</li> <li>4.15. Platform Standards</li> <li>4.16. Test-First</li> </ul> | distributed software<br>To implement constructing of                                                                                                         |
| 17       | 6 | Software<br>Construction                                                            | 5.1. Development                                                                                                                                                                                                                                     | To be able to use development<br>environments and tools, such as GUI                                                                                         |
| 18       |   | Tools                                                                               | 5.2. GUI Builders<br>5.3. Unit Testing Tools<br>5.4. Profiling, Performance<br>Analysis, and Slicing Tools<br>Matrix of Topics vs.<br>Reference Material                                                                                             | builders, unit testing tools, profiling, performance analysis and slicing tools                                                                              |
| 19       | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | Distribution of projects<br>assignments<br>Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                 | To learn how to specify a project<br>To learn how to organize the project and to<br>break-down tasks<br>To implement acquired knowledge during<br>the course |
| 20       | 3 | F2F Project<br>Workshop<br>(in BMU<br>computer<br>rooms,<br>optionally -<br>online) | Students work on their<br>project tasks with<br>assistance of instructors                                                                                                                                                                            | To develop necessary Java programs<br>To realize all programming tasks of<br>students' project.<br>Presentation of the project report                        |

| 21 | 3 | Final<br>examination          | Students get examination<br>questions and problems | To evaluate knowledge and skills acquired during the course |
|----|---|-------------------------------|----------------------------------------------------|-------------------------------------------------------------|
|    |   | (in BMU<br>computer<br>rooms) | Exam duration - 3 hours                            |                                                             |

#### 3.2.13 Course 13: Software Development Project

Duration: 16 days, 5 online teaching days, 10 days workshop days, 4 ECTS Number of hours: 3 hours per online/workshop day, Total: 45 hours

| Day | Ho-<br>urs | Teaching<br>units     | Topics                             | Objectives – knowledge or skills that the student should receive                                      |
|-----|------------|-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|
| 1   | 3          | Project<br>Management | Risk management<br>Managing people | To know the principal tasks of software project managers;<br>To have been introduced to the notion of |
|     |            |                       | Teamwork                           | risk management and some of                                                                           |
|     |            |                       |                                    | the risks that can arise in software projects;                                                        |
|     |            |                       |                                    | To understand factors that influence personal motivation and what these                               |
|     |            |                       |                                    | might mean for software project managers;                                                             |
|     |            |                       |                                    | To understand key issues that influence team working, such as team                                    |
|     |            |                       |                                    | composition, organization, and communication.                                                         |
| 2   | 3          | Project               | Software pricing                   | To understand the fundamentals of                                                                     |
|     |            | Planning              | Plan-driven development            | software costing and reasons why the price of the software may not be directly                        |
|     |            |                       | Project scheduling                 | related to its                                                                                        |
|     |            |                       | Agile planning                     | development cost;                                                                                     |
|     |            |                       | Estimation techniques              | To know what sections should be included<br>in a project plan that is                                 |
|     |            |                       |                                    | created within a plan-driven development process;                                                     |
|     |            |                       |                                    | To understand what is involved in project scheduling and the use of bar                               |
|     |            |                       |                                    | charts to present a project schedule;                                                                 |
|     |            |                       |                                    | To have been introduced to the 'planning game', which is used to support                              |
|     |            |                       |                                    | project planning in extreme programming;                                                              |
|     |            |                       |                                    | To understand how the COCOMO II model<br>can be used for algorithmic                                  |
|     |            |                       |                                    | cost estimation.                                                                                      |

| 3 | 3 | Quality<br>Management                           | Software quality<br>Software standards<br>Reviews and inspections<br>Software measurement<br>and metrics                               | To understand to the quality management<br>process and know why quality planning is<br>important;<br>To understand that software quality is<br>affected by the software development<br>process used;<br>To be aware of the importance of<br>standards in the quality management<br>process and know how standards are used<br>in quality assurance;<br>To understand how reviews and<br>inspections are used as a mechanism for<br>software quality assurance;<br>To understand how measurement may be<br>helpful in assessing some software quality<br>attributes and the current limitations of<br>software measurement. |
|---|---|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 | 3 | Configuration<br>Management                     | Change management<br>Version management<br>System building<br>Release management                                                       | To understand the processes and<br>procedures involved in software change<br>management;<br>To know the essential functionality that<br>must be provided by a version<br>management system, and the relationships<br>between version<br>management and system building;<br>To understand the differences between a<br>system version and a system<br>release, and know the stages in the<br>release management process.                                                                                                                                                                                                    |
| 5 | 3 | Service-<br>Oriented<br>Software<br>Engineering | Service-oriented<br>Architecture<br>Services as reusable<br>components<br>Service engineering<br>Software development<br>with services | To understand the rationale for software<br>process improvement as a means of<br>improving both product quality and the<br>efficiency and effectiveness of software<br>processes;<br>To understand the principles of software                                                                                                                                                                                                                                                                                                                                                                                              |

| 6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15 | 30 | Software<br>Development<br>Project                    | Students spend 3 hours in<br>a computer room and<br>develop their group<br>projects (cc 5 students per<br>project). Their instructor is<br>helping them during the<br>software development.<br>Students may choose to<br>work online instead F2F. | To develop a software using quality management principles, and configuration management |
|------------------------------------------------------|----|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 16                                                   | 1  | Final<br>examination<br>(in BMU<br>computer<br>rooms) | Presentation of projects                                                                                                                                                                                                                          | To demonstrate their ability to develop a software, as a team.                          |

### 4 Pedagogical Approach to SCHE courses

BMU SCHE Java Developer target the following categories of students:

- Bachelor degree holders with or without job, willing to change their profession and job
- Master degree holders interested to learn Java programming, as they need for their jobs
- Individuals that abandoned their bachelor studies and are seeking to get a quick qualification of a Java Developer (in 12 months) and find a job as soon as possible
- Fresh graduates from secondary schools not interested to get bachelor degrees and planning to get a Java Developer job

Some of students may be employed and they cannot be full-time students following F2F (face-to-face) courses. The same is the case with students not living in Belgrade or Niš, towns where BMU has campuses. Therefore, BMU decided to implement SCHE program providing (Figure 3.1):

- Online courses,
- F2F or online two days workshops at the end of each course, allowing students to realize their project assignments, and
- An exam after each course and its workshop.



Figure 3.1: Three components of a SCHE Java Developer course

Instead of academic organization of courses (4-5 courses per semester realized in parallel during 15 weeks), it is expected that a SCHE program may be more effective if courses are sequentially thought, as shown in Figure 3.2. Exams should demonstrated students' ability to implement what they learnt. If they fail, they will have one additional exam. If they fall again, they cannot proceed with the SCHE program and must wait a new group of students of the SCHE Job Developer, and continue their program with the course that didn't pass.



Figure 3.2: Sequential implementation of courses of SCHE Java Developer

Students will be organized in groups of 20, having their own tutor (one per group). Tutor will communicate with online students every days monitoring their work and giving them consultations. Tutors will also check results of given assignments to students and of their testing. Tutors will organize P2D or online workshops ( for those not being able to participate in F2F workshops), aiming the course projects. Each student will get his project assignment that he must to complete by the end of workshop and before the exam, planned for the next day.

Figure 3.3 shows the organization of an online lesson. It consists of a number of topics and sub-topics. A topic or sub-topic consist of one or more sections that contain contents in form of multimedia web pages created by mDita Editor developed by BMU.



Figure 3.3 : Organization of an online lesson with learning objects, related to topics and sub-topics using sections of different kinds

An online lessons contains a number of learning objects with one or more sections. Sections may provide now knowledge concepts, examples, assignments, tests, video clips, forums or chats. First order learning objects (or LO) contains topic sections or/and sub/topic sections. Each section is multimedia web page that contains textual information, video and audio clips, listings of Java codes and evaluation sections, such as different kind of tests and assignments. Authors of courses organize online lessons as hierarchy of learning objects related to topics and sub-topics. Online lessons, topics and subtopics are specified according to knowledge units and topics defined in BOM (the Body of Knowledge) of the SCHE Java Developer. Hours on online lessons are rough estimation of durations of online lessons, but the focus is on lessons' content, not in their durations.

Delivery of online lessons id managed by LAMS (Learning Activity Management System). It was chosen as it supports the concepts of learning objects and learning activities, organized in processes with branching. It is necessary for achieving a kind of personalization of e-learning, as different learning content may be offered to different students or group of students, based on their ability to learn and their knowledge levels.

Figure 3.4 shows one section (web page) created by mDita editor.

| 02 - SQL                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KREIRANJE TABELE COU                                                                                                                                                                                                                                                                                                                                                      | JRSE                                                                                                                                                                                                                                                                                          |
| Naredba create kreira tabelu u bazi pod<br>atribute i njihove tipove podataka.<br>Da bi kreirali tabelu, treba koristite naredbu create i da navede<br>naziv, njene atribute i tipove. Dačemo primer kreiranja tabele i<br>sici 5 i 6:                                                                                                                                    |                                                                                                                                                                                                                                                                                               |
| Concredid subjectial concrementation of the sum<br>IIIII CKCI 1305 Introduction to Jave II<br>IIIII CKCI 1305 Introduction to Jave II<br>IIIII CKCI 1305 Obstance System<br>IIIII CKCI 1379 Garbane System<br>IIIII MAIN 2750 Calculus II<br>IIIII MAIN 3750 Calculus II<br>IIIII MAIN 1350 Calculus II<br>IIIII GOK IIII Maning<br>IIIII THE ISAN Barbane Administration | meoriše kao atribut. Na primer,     char(8) određuje da se vrednost za courseld sastoji od pet oznaka.     varchar(80) određuje da je naziv string promeriljive dužine, ali sa     najviše 50 oznaka     inrieger specificira da je vrednost atributa courseNumber mora da     bude ceo brol. |
| Sika-4. Tabela Course<br>create table Course (<br>courseId cher(5),<br>subject2d cher(4) not mall,<br>courseHumber integer,<br>title verchar(30) not mall,<br>numOfCredits integer,<br>primary key (courseId)<br>11                                                                                                                                                       | Takođe je navedeno da je primami ključ označen sa courseki.                                                                                                                                                                                                                                   |
| © UNIVERZITET METROPOLITAN,                                                                                                                                                                                                                                                                                                                                               | Beograd / Kopitanje i umoožavanje nije dozvoljeno / Siva prava su zadržana.                                                                                                                                                                                                                   |

Figure 3.4: A section with learning content as shown to students by LAMS

The number of topics (first order LOs) may be different, depending of its content. The same is valid for topics and their sub-topics and sections. So, a course may have different number of lessons, with different number of learning objects for its topics, sub-topics and sections.

When planning the duration of each course, it is assumed that student can use online lessons provided by BMU e-Learning System, six day a week, and at least three learning hours per day (reading or watching video clips and listening the content of a lesson). Besides these three "learning hours", it is expected that student spend one or more hours for doing tests and assignments related to a topic.