[image: ptsche][image: http://spu.fem.uniag.sk/Elena.Horska/foodcost/Erasmus.jpg]

Partners Technical Report

DEVELOPMENT OF CURRICULUM OF SCHE PROGRAM
PROGRAMMING IN JAVA

	Project Acronym:
	PT&SCHE

	Project full title:
	Introduction of part-time and short-cycle studies in Serbia

	Project No:
	561655-EPP-1-2015-1-EE-EPPKA2-CBHE-SP(2015-3431/001-001)

	Funding Scheme:
	ERASMUS+

	Coordinator:
	TLU – Tallinn University

	Project start date:
	October 15, 2015

	Project duration:
	36 months

	Abstract
	This report provides the information on developed curriculum of the pilot implementation of the online short-cycle in higher education (SCHE) program PROGRAMMING IN JAVA. Its aim is to provide the qualification of a Java Developer after 12 months with 600 online and F2F hours of education and training, It consists of 18 courses (11 core and 7 elective courses) and a Internship lasting two months. The students that successfully submit all assignments and projects for 12 courses and complete it two months internship, is awarded with a Certificate.
As a pilot program, the curriculum and organization of the SCHE program has been developed according to deliverables of
WP2. Development of legal frameworks for implementation for PT&SCHE

[bookmark: _Toc347927423][bookmark: _Toc349768023][bookmark: _Toc437957165][bookmark: _Toc475347712]DOCUMENT CONTROL SHEET

	Title of Document:
	D5.1.1 Curriculum development of the short cycle program PROGRAMMING IN JAVA

	Work Package:
	WP5. Pilot implementation of online PT & SCHE programs

	Last version date:
	17/03/2019

	Status :
	Final

	Document Version:
	2.0

	File Name
	D5.1.1 Development of Online SCHE Programming in Java

	Number of Pages
	82

	Dissemination Level
	Institutional

[bookmark: _GoBack]
[bookmark: _Toc347927424][bookmark: _Toc349768024][bookmark: _Toc437957166][bookmark: _Toc475347713]VERSIONING AND CONTRIBUTION HISTORY

	Version
	Date
	Revision Description
	Responsible Partner

	0.9
	1.5.2017
	Concept development
	Dragan Domazet, BMU

	1.0
	11.7.2017
	Completed draft version
	Dragan Domazet, BMU

	1.1
	16.7.2017
	Modification of curriculum and title of the program.
	Dragan Domazet, BMU

	1.2
	20.7.2017
	Modified courses
	Dragan Domazet, BMU

	2.0
	17.3.2019
	Updating, adding new stuff and finalization of the document
	Dragan Domazet, BMU

	
	
	
	

	
	
	
	

TABLE OF CONTENT

1	SPECIFICATION OF THE ICT JOB PROFILE: DEVELOPER	4
1.1	Relevant EU Policy Documents	4
1.1.1	European ICT Professional Profiles	4
1.1.2	The European e-Competence Framework	7
1.2	The role and competences of a Developer	10
1.2.1	The specification of the profile	10
1.2.2	e-competences required	11
1.3	The Body of Knowledge	16
1.3.1	The European Foundational ICT Body of Knowledge	16
1.3.2	The Body of Knowledge for Developer SCHE Programme	26
2	THE SHORT CYCLE PROGRAMME FOR THE PROFILE ICT JAVA DEVELOPER	28
2.1	Organisation structure of a Short Cycle Program	28
2.2	Relationships between e-competences and BMU e-courses	31
2.2.1	Acquiring the e-competence B.1. Design and Development (Level 3)	32
2.2.2	Acquiring the e-competence B.2. System Integration (Level 2)	33
2.2.3	Acquiring the e-competence B.3.Testing (Level 2)	34
2.2.4	Acquiring the e-competence B.5. Documentation Production (Level 3)	34
2.2.5	Acquiring the e-competence C.4. Problem Management (Level 3)	35
2.2.6	The List of BMU e-Courses Related to c-competences Specified for the ICT Profile Developer	36
2.2.7	Mapping of BMU Bachelor Courses into SCHE Programming in Java	37
3	COURSES OF SCHE PROGRAMMING IN JAVA	38
3.1	Sequence of courses of SCHE Programming in Java	38
3.2	Syllabi of Programming Module Courses	38
3.2.1	Course 1: Introduction to IT Systems	39
3.2.2	Course 2: Programming Fundamentals	44
3.2.3	Course 3: JAVA 1: Fundamentals of Programming	46
3.2.4	Course 4: Java 2: Object-oriented programming	52
3.2.5	Course 5: Java 3: GUI Programming	57
3.2.6	Course 6: Java 4: Data Structures and Algorithms – Part A	62
3.2.7	Course 7: Java 5: Data Structures and Algorithms – Part B	66
3.2.8	Course 8: Java 6: Advanced Java Programming	70
3.2.9	Course 9: Java 7: Java Enterprise Edition	73
3.2.10	Course 10: Software Development Process and Methodologies	77
3.2.11	Course 11: Software Construction	82
3.2.12	Course 12: Elective Course	85
4	Pedagogical Approach to SCHE courses	86
5	Plan for implementation of SCHE PROGRAMMING IN JAVA	88

CURRICULUM DEVELOPMENT OF SCHE “PROGRAMMING IN JAVA”
[bookmark: _Toc388421498]SPECIFICATION OF THE ICT JOB PROFILE: JAVA DEVELOPER
[bookmark: _Toc388421499]Relevant EU Policy Documents
[bookmark: _Toc388421500]European ICT Professional Profiles
“European ICT Professional Profiles”, CWA 16458,is the second relevant document that is the CEN Workshop Agreement document (CEN stands for European Committee for Standardization). This Workshop Agreement has been endorsed by the National Members of CEN, but this is not t an official standard developed by CEN and its Members. The following paragraphs are the citations from this document:
“As a response to the huge number of ICT Profile Frameworks and Profile descriptions used today in European ICT Business and Qualification systems, it was decided to create a number of representative ICT Profiles covering, at their level of granularity, the full ICT Business process.
The profiles may be used for reference, or for the basis to develop further profile generations, by European stakeholders. Structured from six main ICT Profile families, these Profiles reflect the top of a European ICT Profiles family tree (Figure 1.1.). The concept devised is broadly analogous to human genetics where the genes of one generation pass down to the next. In the same way it is envisaged that the core components of the 23 Generation 2 Profiles will pass down to profiles constructed to meet specific stakeholder requirements. The 23 Profiles constructed in this CWA combined with e-competences from the e-CF, provide a gene pool for the development of tailored profiles that may be developed by European ICT sector players in specific contexts and with higher levels of granularity.
The 23 multi-stakeholders agreed that ICT Profile descriptions are based on the European e-Competence Framework (e-CF). European ICT Profiles and e-Competence are complementary concepts that can significantly support the development and management of a world class ICT professional community within Europe.
Applied at the same level of granularity as the e-CF, the European ICT Profiles provide generic skeletons of the most representative Profile prototypes currently used in ICT Business structures.”
[image:]

Figure 1.1 European ICT Profile Family Tree – Generation 1 and 2 as a shared European reference
“To add value, the European ICT Profiles must be adaptable to the employment environment. They are not useful if, on the contrary, the employer has to change practices to meet profile descriptions.
The European ICT Profile descriptions are therefore reduced to core components and constructed to clearly differentiate one from each other. Further context-specific elements can be added to the Profiles according to the specific environments in which the Profiles are to be integrated. Clause 4 explains how the European ICT Profiles can be used and adapted by any European stakeholder from a business, qualification or from a research perspective.
The 23 Profiles cover the full ICT Business process; positioning them into the e-CF Dimension 1 demonstrates this. Figure 1.2 below illustrates this together with the ICT Profiles family structure.
The European ICT Profiles build a consistent bridge between existing competence and profile approaches. In some European Countries, job profile creation is deployed as the traditional methodology for identifying and driving both organisational career paths and educational curriculum. Other countries deploy a competence-oriented approach, appreciating that the competence approach provides more flexibility.
In the European ICT Profiles development, the advantages of both approaches have been combined. The European ICT Profiles present e-Competences in an operational context. e-Competences provide the European ICT Profiles with core content in terms of capabilities needed to successfully perform a role. This provides the flexibility to make Profiles applicable EU-wide yet usable in a workplace environment.

[image:]
Figure 1.2 European ICT Professional Profiles structured by six families and positioned within the ICT Business Process (e-CF Dimension 1)
By embedding e-Competence within ICT Profiles, which can be readily understood by experts or laymen, the European ICT Profile Family provides a universally applicable solution for communication between stakeholders with interests in ICT skills, knowledge and attitude development.”
ICT Profiles are not totally isolated from each other. Those that interact with each other more closely, create a Profile Cluster. Figure 1.3 shows some of Profiles Clusters from the Design and Development Profile families.
 [image:]
Figure 1.3 ICT Profile Clusters related to Design and Developmenti Profile families.

[bookmark: _Toc388421501]The European e-Competence Framework
The CWA (CEN Workshop Agreement) document: “The European e-Competence Framework (e-CF) version 3.0” is the result of 8 years continuing effort and commitment by multi-stakeholders from the European ICT sector.
[image:]
Figure 1.4: 40 e-Competences defined by the European e-Competence Framework

The European e-Competence Framework (e-CF) version 3.0 provides a reference of 40 competences as required and applied at the Information and Communication Technology (ICT) workplace, using a common language for competences, skills and capability levels that can be understood across Europe. As the first sector-specific implementation of the European Qualifications Framework (EQF), the e-CF was created for application by ICT service, user and supply companies, for managers and human resource (HR) departments, for education institutions and training bodies including higher education, for market watchers and policy makers, and other organisations in public and private sectors.
“The e-CF supports the definition of jobs, training courses, qualifications, career paths, formal and non-formal learning paths, certifications etc. in the ICT sector. In this way, local, national, European and global ICT vendor and user companies as well as qualification and certification providers have access to a shared reference.”
The European e-Competence Framework is structured from four dimensions (Figure 1.4). These dimensions reflect different levels of business and human resource planning requirements in addition to job / work proficiency guidelines and are
specified as follows:
Dimension 1: 5 e-Competence areas, derived from the ICT business processes PLAN – BUILD – RUN – ENABLE – MANAGE (see Figure 1.2)
Dimension 2: A set of reference e-Competences for each area, with a generic description for each competence. 40 competences identified in total provide the European generic reference definitions of the e-CF 3.0.
Dimension 3: Proficiency levels of each e-Competence provide European reference level specifications on e-Competence levels e-1 to e-5, which are related to the EQF levels 3 to 8. (Table 1.1)
Dimension 4: Samples of knowledge and skills relate to e-Competences in dimension 2. They are provided to add value and context and are not intended to be exhaustive.
Whilst competence definitions are explicitly assigned to dimension 2 and 3 and knowledge and skills samples appear in dimension 4 of the framework, attitude is embedded in all three dimensions.
Table 1.1.
	EQF Levels
	EQF
	e-CF Levels
	e-CF Levels descriptions
	Typical Tasks

	8
	Knowledge at the most advanced frontier, the most advanced and specialised skills and techniques tosolve critical problems in research and/or innovation, demonstrating substantial authority, innovation, autonomy, scholarly or professional integrity.
	e-5
	Principal
Overall accountability and responsibility; recognised inside and outside the organisation for innovative solutions and for shaping the future using outstanding leading edge thinking and knowledge.
	IS strategy or programme management

	7
	Highly specialised knowledge, some of which is at the forefront of knowledge in a field of work or study, as the basis for original thinking, critical awareness of knowledge issues in a field and at the interface between different fields, specialised problem-solving skills in research and/or innovation to develop new knowledge and procedures and to integrate knowledge from different fields, managing and transforming work or study contexts that are complex, unpredictable and require new strategic approaches, taking responsibility for contributing to professional knowledge and practice and/or for reviewing the strategic performance of teams
	e-4
	Lead Professional / Senior Manager
Extensive scope of responsibilities deploying specialised integration capability in complex environments; full
responsibility for strategic development of staff working in unfamiliar and unpredictable situations
	IS strategy/ holistic solutions

	6
	Advanced knowledge of a field of work or study, involving a critical understanding of theories and principles, advanced skills, demonstrating mastery and innovation in solving complex and unpredictable problems in a specialised field of work or study, management of complex technical or professional activities or projects, taking responsibility for decision-making in unpredictable work or study contexts, for continuing personal and group professional development.
	e-3
	Senior Professional / Manager
Respected for innovative methods and use of initiative in specific technical or business areas; providing leadership and taking responsibility for team performances and development in unpredictabl environments.
	Consulting

	5
	Comprehensive, specialised, factual and theoretical knowledge within a field of work or study and an awareness of the boundaries of that knowledge, expertise in a comprehensive range of cognitive and practical skills in developing creative solutions to abstract problems, management and supervision in contexts where there is unpredictable change, reviewing and developing performance of self and others.
	e-2
	Professional
Operates with capability and ndependence in specified boundaries and may supervise others in this environment; conceptual and abstract model building using creative thinking; uses theoretical knowledge and practical skills to solve complex problems within a predictable and sometimes unpredictable context.
	Concepts / Basic principles

	4
	Factual and theoretical knowledge in broad contexts within a field of work or study, expertise in a range of cognitive and practical skills in generating solutions to specific problems in a field of work or study, self-manageme nt within the guidelines of work or study contexts that are usually predictable, but are subject to change, supervising the routine work of others, taking some responsibility for the evaluation and improvement of work or study activities.
	
	
	

	3
	Knowledge of facts, principles, processes and general concepts, in a field of work or study, a range of cognitive and practical skills in accomplishing tasks. Problem solving with basic methods, tools, materials and information, responsibility for completion of tasks in work or study, adapting own behaviour to circumstances in solving problems.
	e-1
	Associate
Able to apply knowledge and skills to solve straight forward problems; responsible for own actions; operating in a stable environment.
	Support / Service

[bookmark: _Toc388421502]The role and competences of a Developer
[bookmark: _Toc388421503]The specification of the profile
ICT Profile Summary statement:
Builds/codes ICT solutions and specifis ICT products according to the customer needs.
Alternative titles:
· Component Developer
· Application Developer
· Programmer
[image:]
Figure 1.5: Job profile specification of a Developer

[bookmark: _Toc388421504]e-competences required
A Developer must have the following e-competence specified jn the European e-Competence Framework 3.0:
B.1. Design and Development (Level 3)
B.2. System Integration (Level 2)
B.3.Testing (Level 2)
B.5. Documentation Production (Level 3)
C.4. Problem Management (Level 3)
For each of these e-competences we cite its specification from the document European e-Competence Framework 3.0.
B.1. Design and Development (Level 3)
[image:]
Figure 1.6: Knowledge and skills needed for e-competence B.1. Application Development
B.2. System Integration (Level 2):
[image:]
Figure 1.7: Knowledge and skills needed for e-competence B.2. Component Integration

B.3.Testing (Level 2):
[image:]
Figure 1.8: Knowledge and skills needed for e-competence B.3. Testing

B.5. Documentation Production (Level 3):
[image:]
Figure 1.9: Knowledge and skills needed for e-competence B.5. Document Production

C.4. Problem Management (Level 3):
[image:]
Figure 1.10: Knowledge and skills needed for e-competence B.5. Problem Management

[bookmark: _Toc388421505]The Body of Knowledge
Specification of knowledge units and skills provided for each e-competence in the previous section is not enough to specify the curriculum for a short cycle program for a profile. The specifies required knowledge and skills are of very high level and need to be specified at lower levels. This is the mission of a Body of Knowledge of a study program. In our case we can use:
· The Foundation ICT Body of Knowledge, Version 1, 22 February 2015, a report prepared for the European Commission, DG Internal Market, Industry, Entrepreneurship and SMEs by the Service Contract: e-Skills: Promotion of ICT Professionalism in Europe | No 290/PP/ENT/CIP/13/C/N01C011 prepared by Capgemini Consulting and Ernst & Young.
· The Software Engineering Body of Knowledge – SWEBOK 3.0, specified by the IEEE Computer Society - see P. Bourque and R.E. Fairley, eds., Guide to the Software Engineering Body of Knowledge, Version 3.0, IEEE Computer Society, 2014; www.swebok.org.
[bookmark: _Toc388421506]The European Foundational ICT Body of Knowledge
The European Foundational ICT Body of Knowledge is the base-level knowledge required to enter the ICT profession and acts as the first point of reference for anyone interested in working in ICT’.
The ultimate objective is to create a recognised and supported Foundational ICT Body of Knowledge that:
· Serves as an entry point to get into ICT for anyone contemplating a career in ICT and entering from other professions or wanting to digitise their current job;
· Facilitates communication between and understanding of ICT professionals in Europe in whatever sector they are active, thereby reducing risks and strengthening ICT professionalism;
· Increases the supply and pool of ICT professionals and enhances the image of ICT.
The definition of an ICT Professional is defined, as someone who should:
· Possess a comprehensive and up-to-date understanding of a relevant body of knowledge;
· Demonstrate on-going commitment to professional development via an appropriate combination of qualifications, certifications, work experience, non-formal and / or informal education;
· Adhere to an agreed code of ethics / conduct and / or applicable regulatory practices; and
· Through competent practice deliver value for stakeholders.
Some of the key challenges for the near future are to:
· Ensure that as many ICT professionals as possible have the necessary relevant knowledge, skills and competence to deliver professional products and service in today’s digital economy;
· Improve the quality of the ICT profession;
· Close the ICT resource and skills gap;
· Enhance growth in digital jobs in Europe;
· Improve general ICT knowledge among professionals in other fields of expertise.
The nature of ICT jobs is also changing. It is no longer enough to merely be a technical expert. The industry needs professionals with a diversity of ICT knowledge and skillsx. ICT professionals are also required to understand the business, operational and HR management aspects. Industry is looking for multidisciplinary ICT professionals, dual thinkers (i.e. people who have a good understanding of both business and Technology) or T-shaped persons (see below). ICT is no longer a back office support tool or one department within a company but permeates all the layers and units of a company. ICT has moved itself to the forefront and become a key strategic asset in everyday (professional) life. Therefore, it is no longer sufficient only to have knowledge of one specific ICT domain.
The need for a broad IT systems viewpoint is essential, with the ability to understand the possibilities and constraints of the various technologies and to talk a common language with the diversity of people involved. This was expressed as a concept for the first time by David Guest in 1991xi through the use of the T-shape metaphor, which has been widely adopted since (Figure 1.11).
[image:]
Figure 1.11 Shaped Skills Model

The vertical line of the T represents the depth of related skills and expertise in a single field, whereas the horizontal bar is the ability to collaborate across disciplines with experts in other areas and to apply knowledge in areas of expertise other than one’s own. This model thus differs from another classic type: “I-shaped” – with a deep understanding of one specific discipline, but not necessarily of any other. In the current ICT environment, employers find themselves trying to do a “T” job with “I” people.
However, a professional who combines specialisation in a specific ICT domain with relevant breadth of ICT knowledge is more easily employable and has a competitive position on the market. Given that there has in the past been a particular focus on depth, it is necessary to look more closely at the issue of breadth of knowledge. It is all a matter of creating the right balance between the two.
The objective is to create T-shaped persons with as much as possible the same elements in the horizontal bar. All ICT professionals should have the same DNA. It is however often the case that ICT professionals have much in common, but have different (job) profiles. The objective of a Body of Knowledge (BOK) is to define the ‘chromosomes’, or building blocks of the horizontal bar, in the ICT field and act as a guide to the breadth of ICT knowledge required.
The EU Foundational ICT Body of Knowledge thus aims to provide guidance for individuals, academia and industry, and hence contribute to developing tomorrow’s multidisciplinary ICT professionals.
The structure of the Foundational ICT Body of Knowledge could be described as an ‘inverted T-model’, in which the horizontal axis shows the knowledge areas of the ICT domain running from a predominantly strategic to a predominantly technological perspective. The vertical axis corresponds to specific knowledge and skills an individual should develop to specialise in one domain. We can assume that any ICT professional wanting to go into a field different from that of their existing specialisation should come down to the horizontal bar (the base-level) and find a connection to other knowledge areas in order to expand their breadth of knowledge.
The Foundational ICT Body of Knowledge provides the base-level knowledge that ICT professionals require. However, considering the wide range of knowledge in the ICT field, it has to be intended as a “permissive model” where every ICT professional will acquire as much breadth as possible in terms of knowledge
In addition to the dimension of ICT core knowledge defined above, the European Foundational ICT Body of Knowledge consists of a second dimension of complementary base-level knowledge required to enter the ICT profession. This dimension includes cross-cutting knowledge that cannot be considered purely in relation to one ICT knowledge area but can be referred to, at different levels, in relation to all core knowledge areas, i.e.:
· Legal, ethical, social and professional practices: including this knowledge in the Foundational ICT Body of Knowledge serves to provide key reference points for everyone interested in the ICT profession, as they are strongly linked to the definition of the ICT profession itself. Legal, ethical, social and professional practices need to be addressed at different levels at different stages of professional development. Thevery nature of professional work means that some knowledge and skills are best developed through experience and that an understanding of complex issues, such as ethics, grows with maturity. Further development will be provided at a full professional level through participation in certification programmes.
· Soft skills: including soft skills in the Foundational ICT Body of Knowledge provides a concrete contribution to the evolution of the ICT profession. Soft skills integrate the technical skills, providing a sound basis for developing “dual thinker” profiles, which are oriented towards team building, collaboration, negotiation, e-leadership, etc.
· Emerging / disruptive technologies: given the fast growth in the disruptive technologies of cloud, mobile, social and big data, which are predicted to constitute 40% of the global market and 98% of growth by 2020, and the expected creation of 4.4 million IT jobs globally to support big data – base- level knowledge should be provided to improve an understanding of these technologies and their impacts on business and society.
The BOK illustrated below (Figure 1.12) and expanded on in the following sections presents the taxonomy of the high-level areas of knowledge that represent the base level that starting ICT professionals should understand. These knowledge areas are then broken down and described in further detail, including with a general definition of the knowledge area, a detailed list foundational knowledge, reference to the e-CF, potential job profiles and examples of specific Bodies of Knowledge, certification and training opportunities.
[image:]
Figure 1.12: Taxonomy of Foundational ICT Body of Knowledge
This Body of Knowledge aims to develop the next generation of ICT professionals, e.g. young, rounded ICT professionals with a significant breadth of base-level knowledge of ICT that allows them to further specialize within a particular discipline.
This Version 1.0 of the European Foundational ICT Body of Knowledge presents the taxonomy of high-level areas of knowledge that represent the base level starting ICT professionals should understand.
The following section presents 12 Knowledge Areas:
1. ICT Strategy & Governance
2. Business and Market of ICT
3. Project Management
4. Security Management
5. Quality Management
6. Architecture
7. Data and Information Management
8. Network and Systems Integration
9. Software Design and Development
10. Human Computer Interaction
11. Testing
12. Operations and Service Management.
Each Knowledge Area is further detailed, including a:
1. Definition of the Knowledge Area;
2. List of items required as foundational knowledge necessary under this Knowledge Area;
3. List of references to the e-Competence Framework (dimension 4: knowledge);
4. List of possible job profiles that require having an understanding of the Knowledge Area;
5. List of examples of specific Bodies of Knowledge, certification and training possibilities.
	
Figures 1.13-1.116 summarize the content of few Knowledge Areas, the most relevant for the profile Developer:

· Software Design and Development
· Human Computer Interaction
· Data and Information Management
· Testing

These Knowledge Areas provide broader knowledge then needed for the Developer profile, as it is related only to a part of one of five (Build) phases of the ICT Business Process, as shown in Figure 1.2 earlier.

[image:]
Figure 1.13: Software Design and Development Knowledge Area

[image:]
Figure 1.14: Human-Computer Interaction Knowledge Area

[image:]
Figure 1.15: Testing Knowledge Area

[image:]
Figure 1.16: Data and Information Management Knowledge Area

As specified earlier, five ICT e-competences are required for the profile Developer:

B.1. Design and Development (Level 3)
B.2. System Integration (Level 2)
B.3.Testing (Level 2)
B.5. Documentation Production (Level 3)
C.4. Problem Management (Level 3)

Figure 1.17 shows relationships of these five e-competences and 10 Knowledge Areas of the ICT Foundation Body of Knowledge. It does nit mean the profile Developer must know everything specified in these 10 Knowledge Areas. In so
me of them it is almost true, but in most of other Knowledge Areas is not the case, as only a small portion of the Knowledge Area is needed. It will be the task of curriculum development to be more specific and specify lower level knowledge units and skills.

Figure 1.17: Relationships between Developer’s e-competences and Knowledge Areas of the ICT Foundation Body of Knowledge

More specific, four Knowledge Areas of the profile Developer are shown in Figure 1.18 that shows relationships of the European ICT Professional Profiles and Knowledge Areas of the ICT Foundation Body of Knowledge.

Figure 1.19: Relationships between ICT Job Profiles and Knowledge Areas of the ICT Foundation Body of Knowledge

Unfortunately, the ICT Foundation Body of Knowledge does not provide yet lower levels of knowledge and it is not sufficient for a curriculum development. Therefore, additional extensions (sub-topics) of the Bodies of Knowledge are needed.

[bookmark: _Toc388421507]The Body of Knowledge for Developer SCHE Programme

IEEE Computer Society specified two Bodies of Knowledge (BOK) that are relevant for ICT Profile Developer:
1. Computer Science Curricula 2013 - Curriculum Guidelines for Undergraduate Degree Programs in Computer Science, December 20, 2013, The Joint Task Force on Computing Curricula of Association for Computing Machinery (ACM) and IEEE Computer Society
2. SWEBOK 3.0 – Guide to the Software Engineering Body of Knowledge, Editors Pierre Bourque, École de technologie supérieure (ÉTS) and Richard E. (Dick) Fairley, Software and Systems Engineering Associates (S2EA), IEEE Computer Society
Knowledge areas and topics from these two Bodies of Knowledge are to be selected according to specified of Knowledge Areas and e-competences required for ICT Profile Developer specified in previous sections.
Figure 1.1 showed European ICT Profile Family Tree with Generation 1 and 2 of ICT Profiles. 23 in total). As this SCHE Programme aims to educate and train Java developers, i.e. developers of applications written in Java, we will create a Generation 3 ICT Profile – Junior Java Developer and Java Developer. We have to provide all competences specified for ICT Profile Developer specified in previous sections, but extended with specific competences of Java Developers.
Based of above specifications, we summarize in Table 1.1 job descriptions for Junior Java Developer and Java Developer, levels of their e-competences in Table 1.2, knowledge areas required (in Table 1.33) and skills (in Table 1.44) in relation to their five e-competences.
Table 1.1: Job description related to different e-competences
	
	JUNIOR JAVA DEVELOPER & JAVA DEVELOPER

	e-competences
	Job Description with

	B.1. Application Development
	Interprets the application design to develop a suitable application in accordance with customer needs. Adapts existing solutions by e.g. porting an application to another operating system. Codes, debugs, tests and documents and communicates product development stages. Selects appropriate technical options for development such as reusing, improving or reconfiguration of existing components. Optimises efficiency, cost and quality. Validates results with user representatives, integrates and commissions the overall solution.

	B.2. Component Integration
	Integrates hardware, software or sub system components into an existing or a new system. Complies with established processes and procedures such as, configuration management and package maintenance. Takes into account the compatibility of existing and new modules to ensure system integrity, system interoperability and information security. Verifies and tests system capacity and performance and documentation of successful integration.

	B.3.Testing
	Constructs and executes systematic test procedures for ICT systems or customer usability requirements to establish compliance with design specifications. Ensures that new or revised components or systems perform to expectation. Ensures meeting of internal, external, national and international standards; including health and safety, usability, performance, reliability or compatibility. Produces documents and reports to evidence certification requirements.

	B.5. Documentation Production
	Produces documents describing products, services, components or applications to establish compliance with relevant documentation requirements. Selects appropriate style and media for presentation materials. Creates templates for document-management systems. Ensures that functions and features are documented in an appropriate way. Ensures that existing documents are valid and up to date.

	C.4. Problem Management
	Identifies and resolves the root cause of incidents. Takes a proactive approach to avoidance or identification of root cause of ICT problems. Deploys a knowledge system based on recurrence of common errors. Resolves or escalates incidents. Optimises system or component performance.

Table 1.2: e -Competence levels
	
	JUNIOR JAVA DEVELOPER
	JAVA DEVELOPER

	e-competences
	Level e-2
	Level e-3

	B.1. Application Development
	Systematically develops and validates applications.
	Acts creatively to develop applications and to select appropriate technical options. Accounts for others development activities.
Optimizes application development, maintenance and performance by employing design patterns and by reusing proved solutions.

	B.2. Component Integration
	Acts systematically to identify compatibility of software and hardware specifications. Documents all activities during installation and records deviations and remedial activities.
	 As for Level e-2

	B.3.Testing
	Organises test programmes and builds scripts to stress test potential vulnerabilities. Records and reports outcomes providing analysis of results.
	As for Level e-2

	B.5. Documentation Production
	Determines documentation requirements taking into account the purpose and environment to which it applies.
	Adapts the level of detail according to the objective of the documentation and the targeted population.

	C.4. Problem Management
	Identifies and classifies incident types and service interruptions. Records incidents cataloguing them by symptom and resolution.
	Exploits specialist knowledge and in-depth understanding of the ICT infrastructure and problem management process to identify failures and resolve with minimum outage. Makes sound decisions in emotionally charged environments on appropriate action required to minimise business impact. Rapidly identifies failing component, selects alternatives such as repair, replace or reconfigure.

Table 1.3: Knowledge needed related to different e-competences
	
	JUNIOR JAVA DEVELOPER & JAVA DEVELOPER

	e-competences
	KNOWLEDGE: Knows/aware of/ familiar with / familiar with

	B.1. Application Development
	K1 appropriate software programs/modules
K2 hardware components, tools and hardware architectures
K3 functional & technical designing
K4 state of the art technologies
K5 programming languages
K6 Power consumption models of software and/or hardware
K7 DBMS
K8 operating Systems and software platforms
K9 Integrated development environment (IDE)
K10 rapid application development (RAD)
K11 IPR issues
K12 modeling technology and languages
K13 interface definition languages (IDL)
K14 security

	B.2. Component Integration
	K1 old, existing and new hardware components/software programs/modules
K2 the impact that system integration has on existing system/organisation
K3 interfacing techniques between modules, systems and components
K4 integration testing techniques
K5 development tools (e.g. development environment, management, source code access / revision control)
K6 best practice design techniques

	B.3.Testing
	K1 techniques, infrastructure and tools to be used in the testing process
K2 the lifecycle of a testing process
K3 the different sorts of tests (functional, integration, performance, usability, stress etc.)
K4 national and international standards defining quality criteria for testing
K5 web, cloud and mobile technologies and environmental requirements

	B.5. Documentation Production
	K1 tools for production, editing and distribution of professional documents
K2 tools for multimedia presentation creation
K3 different technical documents required for designing, developing and deploying products, applications and services
K4 version control of documentation production

	C.4. Problem Management
	K1 the organisation’s overall ICT infrastructure and key components
K2 the organisation’s reporting procedures
K3 the organisation’s critical situation escalation procedures
K4 the application and availability of diagnostic tools
K5 the link between system infrastructure elements and impact of failure on related business processes.

Table 1.4: Skills needed related to different e-competences
	
	JUNIOR JAVA DEVELOPER & JAVA DEVELOPER

	e-competences
	SKILLS: is able to

	B.1. Application Development
	S1 explain and communicate the design/development to the customer
S2 perform and evaluate test results against product specifications
S3 apply appropriate software and/or hardware architectures
S4 develop user interfaces, business software components and embedded software components
S5 manage and guarantee high levels of cohesion and quality
S6 use data models
S7 perform and evaluate test in the customer or target environment
S8 cooperate with development team and with application designers

	B.2. Component Integration
	S1 measure system performance before, during and after system integration
S2 document and record activities, problems and related repair activities
S3 match customers’ needs with existing products
S4 verify that integrated systems capabilities and efficiency match specifications
S5 secure/back-up data to ensure integrity during system integration

	B.3.Testing
	S1 create and manage a test plan
S2 manage and evaluate the test process
S3 design tests of ICT systems
S4 prepare and conduct tests of ICT systems
S5 report and document tests and results

	B.5. Documentation Production
	S1 observe and deploy effective use of corporate standards for publications
S2 prepare templates for shared publications
S3 organise and control content management workflow
S4 keep publications aligned to the solution during the entire lifecycle

	C.4. Problem Management
	S1 monitor progress of issues throughout lifecycle and communicate effectively
S2 identify potential critical component failures and take action to mitigate effects of failure
S3 conduct risk management audits and act to minimise exposures
S4 allocate appropriate resources to maintenance activities, balancing cost and risk
S5 communicate at all levels to ensure appropriate resources are deployed internally or externally to minimise outages

All specified competences, related to job description, levels of e-competences, knowledge needs and skills needs are implemented in Java. Due to time limitation specified by Higher Education Low (2017) of only 12 months, and having in mind of the complexity of Java technology and its implementation, BMU decided to develop its fits SCHE program with the aim to train future Junior Java Developer. After appropriate experience, they can enroll to another SCHE program aiming to train future Java Developers.
Based on above, we specified Generation 3 of the ICT Profile Family, as shown in Figure 1.20. It describe two job profiles Junior Java Developer (e-2, EQF Level 5) and Java Developer (e-3, EQF Level 6). Specifications for these Generation 3 job profiles are given in Tables 1-4. The major difference between Generation 2 Developer and Generation 3 Java developer profiles is in area of development. Java Developer uses Java technology to develop an application. The pilot implementation our short (SCHE) program was developed and implemented for the job profile Junior Java Developer.

[image:]
Figure 1.20 : Positioning of Java Junior Developer and Java Developer SCHE programs in relation to EQF levels and e-Competence proficiency levels

In order to distinguish these two Generation 3 job profiles, we cite description elements of EQF Levels and e-CF Levels in Table 5 using the relevant part of the table given in e-CF(2014).

Unfortunately, the ICT Foundation Body of Knowledge does not provide yet lower levels of knowledge and it is not sufficient for a curriculum development. Therefore, additional extensions (sub-topics) of the Bodies of Knowledge are needed. We used two BOKs: SWEBoK 3.0 (2014) and Computer Science BOK (2013), shown in Figure 1.21. BMU is using these two BOKs for its BSc programs: Software Engineering and Information Technology. These BOKs specify required knowledge not only at levels of knowledge areas, but also at lower levels: knowledge units and topics.

Table 5: European e-CF and EQF level table
	EQF Level
	EQF Levels descriptions
	e-CF Levels
	e-CF Levels descriptions
	Typical Tasks
	Complexity
	Autonomy
	Behaviour

	6
	Advanced knowledge of a field of work or study, involving a critical understanding of theories and principles, advanced skills, demonstrating mastery and innovation in solving complex and unpredictable problems in a specialised field of work or study, management of complex technical or professional activities or projects, taking responsibility for decision-making in unpredictable work or study contexts, for continuing personal and group professional development.
	e-3
	Senior Professional/Manager
Respected for innovative methods and use of initiative in specific technical or business areas; providing leadership and taking responsibility for team performances and development in unpredictable environments.
	Consulting

	Structured – unpredictable
	Works independently to resolve interactive problems and addresses complex issues. Has a positive effect on team performance.
	Planning, making decisions, supervising, building teams, forming people, reviewing performances, finding creative solutions by application of specific technical or business knowledge / skills.

	5
	Comprehensive, specialised, factual and theoretical knowledge within a field of work or study and an awareness of the boundaries of that knowledge, expertise in a comprehensive range of cognitive and practical skills in developing creative solutions to abstract problems, management and supervision in contexts where there is unpredictable change, reviewing and developing performance of self and others.
	e-2
	Professional
Operates with capability and independence in specified boundaries and may supervise others in this environment; conceptual and abstract model building using creative thinking; uses theoretical knowledge and practical skills to solve complex problems within a predictable and sometimes unpredictable context.
	Concepts / Basic principles
	Structured – unpredictable
	Works under general guidance in an environment where unpredictable change occurs. Independently resolves interactive issues which arise from project activities.
	Designing, managing, surveying, monitoring, evaluating, improving, finding non standard solutions.

[image:]

Figure 1.21 Knowledge areas of SWEBOK 3.0 and Computer Science BOK 2013

[bookmark: _Toc388421508]THE SHORT CYCLE PROGRAMME FOR THE PROFILE ICT JUNIOR JAVA DEVELOPER
[bookmark: _Toc388421509]Organisation structure of a Short Cycle Program
In order to develop the required competences of a ICT Profile, such as Developer, a learner must learn all knowledge units (such as topics and sub-topics of a Knowledge Area) specified for the Profile and develop necessary skills. A course is the basic set of knowledge and skills that a student must verify that he or she acquired the specified knowledge and skills by passing an exam. To acquire all competences required, a student must complete a number of courses by passing their exams. The granularity of courses my be different and smaller courses are usually preferable, as student can easier complete their assignment specified by their syllabi and pass their exams.
In some cases courses are inter-related and can be grouped in modules. A short cycle program may have any number of courses and modules. Figure 2.1 shows the general structure of a short cycle program.
[image:]
Figure 2.1: A typical organization structure of a Short Cycle Program
A Short Cycle Program must provide students with the required competences and must qualify them for the specified job. In our case here, the job is the job of a Junior Java Developer, specified in the previous chapter. The Short Cycle Courses will be defined in groups (Modules) related to the specific e-competences listed for the ICT Profile Developer. Each Short Course contains a number of Lessons created by Learning Objects (LO). BMU is using LO of fine granularity needed for personalized e-learning (BMU is strategically oriented to develop and implement personalized e-learning). Small size LOs support LO reusability among different courses.
As shown in Figure 2.1, BMU offers three levels of Certificates:
1. Course Certificate - for all students that pass the final exams of a course.
2. Module Certificate - for all students that pass the final exams of a all course of a Module planned for a SC Program.
3. Programme Certificate - for all students that pass the final exams of all modules of a SC course.
 If a Short Cycle Programme does no contain modules, it provides only two certificates: Course Certificate and Programme Certificate (Figure 2.2)
[image:]
Figure 2.2: A Short-Cycle Programme without modules
[bookmark: _Toc388421510]Relationships between e-competences and BMU e-courses
At this stage we need to identify the existing BMU e-courses that can be used in Short Cycle HE Program JUNIOR JAVA DEVELOPER (or shorter, SCHE JUNIOR JAVA DEVELOPER) for development of its Courses. It can significantly reduce the effort of developing SCHE Program JUNIOR JAVA DEVELOPER and its courses (Figure 2.3). As BMU bachelor courses are based on SWEBOK, their parts of the Body of Knowledge are to be mapped into BMU SCHE courses
[image:]
Figure 2.3: Mapping of required e-competences into BMU bachelor courses and courses of the BMU SCHE Java Developer
[bookmark: _Toc388421511]Acquiring the e-competence B.1. Design and Development (Level 3)
Figure 2.4 shows the list of knowledge areas required for ICT e-competence B.1. Application Development, as well as the BMU e-courses that offer learning objects (learning contents) corresponding to these knowledge areas. Using the Software Engineering Body of Knowledge (SWEBOK 3.0) we will specify all needed learning units that constitute each of the listed learning areas. The listed BMU e-courses were developed to implement SWEBOK 3.0 , they provide learning objects for all knowledge units that are part of SWEBOK 3.0 Knowledge Areas.
[image:]
Figure 2.4: Knowledge areas of e-competence B.1. and related BMU e-courses
[bookmark: _Toc388421512]Acquiring the e-competence B.2. System Integration (Level 2)
Figure 2.5 shows the knowledge areas required for the B.2. System Integration e-competence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (specified by IEEE Computer Society and AIS) for each learning area.
[image:]
Figure 2.5: The knowledge areas specified for the e-competence B.2. Component Integration and related BMU e-courses.

[bookmark: _Toc388421513]Acquiring the e-competence B.3.Testing (Level 2)
Figure 2.6 shows the knowledge areas required for the B.3. Testing e-competence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (specified by IEEE Computer Society and AIS) for each learning area.
[image:]
Figure 2.6: The knowledge areas specified for the e-competence B.3. Testing and related BMU e-courses.
[bookmark: _Toc388421514]Acquiring the e-competence B.5. Documentation Production (Level 3)
Figure 2.7 shows the knowledge areas required for the B.5. Documentation Production e-competence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (for each learning area.
[image:]
Figure 2.7: The knowledge areas specified for the e-competence B.5. Documentation Production and related BMU e-courses.
[bookmark: _Toc388421515]Acquiring the e-competence C.4. Problem Management (Level 3)
Figure 2.8 shows the knowledge areas required for the C.4. Problem Management e-competence and the BMU e-courses that provide learning objects corresponding to the learning units of the listed knowledge areas. These learning units are specified in the SWEBOK 3.0 (for each learning area.
[image:]
Figure 2.8: The knowledge areas specified for the e-competence C.4. Problem Management and related BMU e-courses.

[bookmark: _Toc388421516]The List of BMU e-Courses Related to c-competences Specified for the ICT Profile Developer
After analyzing Figures 2.4 -2.8, Figure 2.9 was created showing the BMU e-courses corresponding to all five e-competence specified for the ICT Profile Java Developer.
[image:]
Figure 2.9: The BMU e-courses related to five e-competences specified for the ICT Profile Java Developer

[bookmark: _Toc388421517]Mapping of BMU Bachelor Courses into SCHE Programming in Java
Next step in development process of SCHE Programming in Java courses if mapping of BMU e-courses into SCHE Programming in Java e-courses (Figure 2.10).
[image:]
Figure 2.10: Mapping of BMU bachelor courses into SCHE Programming in Java courses
Figure 2.11 shows created SCHE Programming in Java courses. These courses takes into account specifics of SCHE Programming in Java. They have to provide more practical and simpler explanation of programming concepts, more elaborated shown examples, and many assignments for individual exercise of each student. In the next chapter, syllabi of these courses will be specified.

[image:]
Figure 2.11 Created SCHE Programming in Java courses
[bookmark: _Toc388421518]COURSES OF SCHE PROGRAMMING IN JAVA
[bookmark: _Toc388421519]Sequence of courses of SCHE Programming in Java
The curriculum of SCHE program “Programming in Java” is determined by mapping of relevant parts (learning units) of the BMU Bachelor's degree programs. It is implemented in three stages where each of them has one or more courses:
1. Preparatory stage – aiming to prepare trainees for programming training, providing the some basic knowledge in IT systems and programming fundamentals. The following courses are included:
1.1. KI101 Introduction to IT systems
1.2. KI102 Fundamentals of Programming
2. Learning stage – providing programming knowledge and skills to trainees, as well as some basic soft skills that might be useful for their employability. This stage includes:
2.1. KI103 Java 1: Fundamentals of Programming
2.2. KI104 Java 2: Object-oriented Programming
2.3. KI105 Java 3: GUI Programming
2.4. KI201 Java 4: Data Structures and Algorithms - Part A
2.5. KI202 Java 5: Data Structures and Algorithms - Part B
2.6. KI203 Java 6: Advanced Java Programming
2.7. KI204 Java 7: Java Enterprise Edition
2.8. KI205 Java 8: Java Programming on the Android platform
2.9. KI206 Software Development Process and Methodology
2.10. KI301 Software Construction
3. On-the-job training stage – providing trainees one course (KI401) and one internship (KI402):
3.1. KI401 Software Development Project
3.2. KI402 Professional Internship - Java Developer
Table 6 shows courses with their course hours of all listed courses and dates of their start.
Table 6: Courses of SCHE Program Java Junior Developer
[image:]

In creating a short program, several IT firms, especially those dealing with software development using Java technology, have been consulted to ensure that this short program is created by "tailor-made employers" who need to hire students who complete this program. The final quality indicator of realized short program is the percentage of student employment in the first three months after the completion of the short program. For each of the above defined courses, program contents and learning outcomes are defined, so in the end, they provide the required competencies for the Java programmer work profile.
The program provides 600 hours of active teaching and 60 ESPB, i.e. credits that can be recognized if the student decides to enroll later on one of four BSC degree programs of BMU: Software Engineering, Information Technology, Computer Games and Information Systems. In the normal duration of the 12 month program, students will have: nine months for active learning, two months of internship and one month for annual leave. Learning is performed in blocks, i.e. according to the "course-by-course" system. It is planned that on each course, a student spends at least three hours a day. Including Saturdays (or 18 hours per week) using the e-Learning System of BMU. Table 8 shows start- and end-days of major groups of training activities of the SCHE program “Programming in Java”, lasting, in total, 12 months and providing 60 ECTS.
The following section specifies syllabi of these courses.

[bookmark: _Toc388421520]Syllabi of Programming Module Courses
[bookmark: _Toc388421521]Course 1: Introduction to IT Systems
Duration: 15 days, 12 online teaching days, 2 day workshop days
Number of hours: 3 hours per online/workshop day, Total: 42 hours
ECTS: 4
	Day
	Hours
	Teaching units
	Topics
	Results – knowledge or skills that the students should receive

	1
	3
	Model of IT Systems
	Components of computer systems
 Computer system
 System software
 Operating system
 Utilities
Application software
Computer Hardware
Central processing unit
Input / output devices
Memory
Data and information
Input and output devices
	

	2
	3

	Operating Systems
	Overview of the operating system functions
Operating system roles
Types of operating systems and their characteristics
 Operating systems of personal computers
 Operating systems server
 Real-time operating systems
 Mainframe operating systems
File system
Comparison of Windows and OS Unis
	

	3
	3

	Concepts and Fundamentals of Information Management

Architecture of Data Organisation
	Information systems: purpose, use, value
Characteristics of data (quality, accuracy, changes with time)
Challenges in data management
Life cycle of data
Database systems
Knowledge management
Data models
Relational model
Normal forms
Functional dependencies
1NF, 2NF, 3NF
	

	
	
	
	
	

	4
	3

	Data Modelling

DDL i basic form of statement SELECT
	Conceptual model
Entity Relationship Diagrams
Logical models
Physical models
Standardized modeling in IDEF1 and UML
	

	
	
	
	DDL: CREATE TABLE, CREATE INDEX; ALTER TABLE, DROP TABLE;
Commands CREATE TABLE, CREATE INDEX; ALTER TABLE, DROP TABLE;
Commands: INSERT, UPDATE, DELETE
Examples of DDL commands for creating database elements
Examples of applying the basic form of the SELECT command to display the unchanged table contents
DMS: INSERT, UPDATE, DELETE
Queries over one table showing the unchanged content of the table: SELECT ... FROM;
	

	5
6
	6

	Web Technologies
Development of Web Sites

Architecture of Information

Digital Media

	Preged web technology: HTTP Protocol, HTML / XHTML XML
Web interface
Availability issue
Web Accessibility Initiative
Web services
Hypertext / hypermedia: Effective Communication, Interfaces, Navigation Schemes, Media Types
Web design process: Design by user, Web design templates, Organization of information
Digital libraries
Media formats
Tools for recording, creating and producing
Compression
Broadcast media (Streaming media)
Implementation and integration
Integration with the database
	

	7
	3
	Inter-Systems Communication
	Architecture for System Integration
DCOM, CORBA, RMI
Web Services and Middleware
Network programming
Messaging and routing services
Data transfer to lower.
	

	8
	3
	Mapping and Exchange of Data
	Meta data
Presentation and encoding of data
XML, DTD, XML Schema
XML document parsing
XSL, XSLT and Xpath
Client-server programming
	

	9
	3

	Integrative
Coding
Scripting Technics
Techics of Code Writing

Integrations
	IPT3. Integrated coding: MVC, singleton, factory method, façade, proxy, decorator and observer
Writing a script and the role of a scripting language
Comparative presentation of Adopt and Adapt techniques compared to make
Versions and version management
Components, interfaces and integration
Infrastructure, middleware and platforms
	

	10
11
	6

	(HCI)Human-Computer Interacion:
Human Factors
Ascpects of HCI of Application Domains
Human-Centered

Evaluation
Development of effective interfaces
	Cognitive principles - perception, memory, problem solving
Understanding the users
Design for man
Ergonomics
Types of environment
Cognitive models
Approach
Usability testing
Usability standards
User experience
Interaction styles
Matching interface elements to user requirements
Biometrics
The stress syndrome caused by repetition of the same operations
PHP language. Writing, analysis and testing a script that includes selection, repetition, and forwarding
Create a PHP document for your purpose
	

	12
	3

	Basics of Computer Networks
Routing

Physical Layer
	KStandardization bodies
OSI model
Internet model
Nodes and connections
IEEE 802.1
Routing algorithms
Routing protocols
Wireless and mobile connections
Commuted and packet transfer
Physical media
Satellite communications
Shannon's law
Multimedia technologies WWW
Databases and file servers
	

	13
14
	6
	Information Security and Safty:
Fundamental Aspects
Security Mechanisms
Ataks
Security

Domains Forensics Information

States Model of Risk Analysis

Security Services
	History and terminology
Security way of thinking
Model for information security (threats, vulnerability, attacks, countermeasures)
Cryptography and cryptosystems

Types of attack
Security domains
Give an overview of possible attacks on network and computer resources
Legal system
Digital investigation and its relationship with other investigations
Rules of record
Media analysis
Searching and seizing the device
Transfer
Storage
Processing
Risk assessment
Costs
Availability
Integrity
Secrecy
Authentication
Non-repudiation
	

	15
	3
	Final examination(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421522]Course 2: Programming Fundamentals
Duration: 11 days, 8 online teaching days, 2 day workshop days
Number of hours: 3 hours per online/workshop day, Total: 30 hours
ECTS: 3
	Day
	Hours
	Teaching units
	Topics
	Results – knowledge or skills that the students should receive

	1,2
	6
	Problem Solving Techniques

Programming Fundamentals
	What Is a computer?
Definition of Problem Solving
Formulating the Real Problem
Analyze the Problem
Design a Solution Search Strategy
Problem Solving Using Programs
The Programming Process
Programming Paradigms
	To formulate and analyse programmimg problems
To design a solution search strategy
To understand the programming process
To understand programming paradigmes

	2,3
	6
	Programming Language Basics
	Programming Language Overview
Operating Systems
Syntax and Semantics of Programming Languages
Low-Level Programming Languages
High-Level Programming Languages
Declarative vs. Imperative Programming Languages
	To understane the role of operating systems
To difirentiate the syntax and semantics of programming languages
To understabd the difference between low- and high-level languages
To understand the difference between declarative and imperative programming languages

	4,5
	6
	Introduction of algorithms and problem-solving
	Problem-solving strategies;
the role of algorithms in the problem-solving process;
implementation strategies for algorithms;
the concept and properties of algorithms
	To understabd the roel of algorithms
To implement alogoritmes in porgramming
To understand the concept and properties of algorithms

	5,6
	6
	Implementation of algorithms
	Examples of algoritmic problem-solving processes
Exercises and student assignments
	To implement algorithms in solving different problems

	7
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	8
	3
	F2F Project Workshop
(in BMU computer rooms, optionally online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	13
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421523]Course 3: JAVA 1: Fundamentals of Programming
Duration: 17 days, 14 online teaching days, 2 day workshop days
Number of hours: 3 hours per online/workshop day, Total: 48 hours
ECTS: 4
	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1
	3
	Introduction to Java
	What is Java? Specification, API, JDK, and iDE
A simple Java program
Creating, compiling, and executing a java program
Programming style and documentation
Programming errors
Developing java programs using NetBeans
Programming exercises
Programming assignment
	To understand computer basics, programs, and operating systems
To describe the relationship between Java and the World Wide Web
To understand the meaning of Java language specification, API, JDK, and IDE
To write a simple Java program
To display output on the console
To explain the basic syntax of a Java program
To create, compile, and run Java programs
To use sound Java programming style and document programs properly
To explain the differences between syntax errors, runtime errors, and logic errors
To develop Java programs using NetBeans

	2,3
	6
	Elementary programming in Java
	Writing a simple program
Reading input from the console
Identifiers
Variables
Assignment statements and assignment expressions
Named constants
Naming conventions
Numeric data types and operations
Numeric literals
Evaluating expressions and operator precedence
Case study: displaying the current time
Augmented assignment operators
Increment and decrement operators
Numeric type conversions
Software development process
Case study: counting monetary units
Common errors and pitfalls
Programming exercises
Programming assignment

	To write Java programs to perform simple computations
To obtain input from the console using the Scanner class
To use identifiers to name variables, constants, methods, and classes
To use variables to store data
To program with assignment statements and assignment expressions
To use constants to store permanent data
To name classes, methods, variables, and constants by following their naming conventions
To explore Java numeric primitive data types: byte, short, int, long, float, and double
To read a byte, short, int, long, float, or double value from the keyboard
To perform operations using operators +, -, *, /, and %
To perform exponent operations using Math.pow(a, b)
To write integer literals, floating-point literals, and literals in scientific notation (
To write and evaluate numeric expressions
To obtain the current system time using System.currentTimeMillis()
To use augmented assignment operators
To distinguish between postincrement and preincrement and between postdecrement and predecrement
To cast the value of one type to another type
To describe the software development process and apply it to develop the loan payment program
To write a program that converts a large amount of money into smaller units
To avoid common errors and pitfalls in elementary programming

	4,5
	6
	Selections (program branching)

	Boolean data type
If statements
Two-way if-else statements
Nested if and multi-way if-else statements
Common errors and pitfalls
Generating random numbers
Case study: computing body mass index
Case study: computing taxes
Logical operators
Case study: determining leap year
Case study: lottery
Switch statements
Conditional expressions
Operator precedence and associativity
Debugging
Programming exercises
Programming assignment

	To declare boolean variables and write Boolean expressions using relational operators
To implement selection control using one-way if statements
To implement selection control using two-way if-else statements
To implement selection control using nested if and multi-way if statements
To avoid common errors and pitfalls in if statements
To generate random numbers using the Math.random() method
To program using selection statements for a variety of examples (SubtractionQuiz, BMI, ComputeTax)
To combine conditions using logical operators (!, &&, ||, and ^)
To program using selection statements with combined conditions (LeapYear, Lottery)
To implement selection control using switch statements
To write expressions using the conditional expression
To examine the rules governing operator precedence and associativity
To apply common techniques to debug errors

	6,7
	6
	Loops
	The while loop
The do-while loop
The for loop
Which loop to use?
Nested loops
Minimizing numeric errors
Case studies
Keywords break and continue
Case study: checking palindromes
Case study: displaying prime numbers
Programming exercises
Programming assignment

	To write programs for executing statements repeatedly using a while loop
To follow the loop design strategy to develop loops
To control a loop with a sentinel value
To obtain large input from a file using input redirection rather than typing from the keyboard
To write loops using do-while statements
To write loops using for statements
To discover the similarities and differences of three types of loop statements
To write nested loops
To learn the techniques for minimizing numerical errors
To learn loops from a variety of examples (GCD, FutureTuition, Dec2Hex)
To implement program control with break and continue
To process characters in a string using a loop in a case study for checking palindrome
To write a program that displays prime numbers

	8,9
	6
	Mathematical functions, characters and strings
	Common mathematical functions
Character data type and operations
The string type
Case studies
Formatting console output
Programming exercises
Programming assignment

	To solve mathematical problems by using the methods in the Math class
To represent characters using the char type
To encode characters using ASCII and Unicode
To represent special characters using the escape sequences
To cast a numeric value to a character and cast a character to an integer
To compare and test characters using the static methods in the Character class.
To introduce objects and instance methods
To represent strings using the String object
To return the string length using the length() method
To return a character in the string using the charAt(i) method
To use the + operator to concatenate strings
To return an uppercase string or a lowercase string and to trim a string
To read strings from the console
To read a character from the console
To compare strings using the equals method and the compareTo methods
To obtain substrings
To find a character or a substring in a string using the indexOf method
To program using characters and strings (GuessBirthday)
To convert a hexadecimal character to a decimal value (HexDigit2Dec)
To revise the lottery program using strings (LotteryUsingStrings)
To format output using the System.out.printf method

	10
11
	6
	Methods
	Defining a method
Calling a method
void method example
Passing arguments by values
Modularizing code
Case study: converting hexadecimals to decimals
Overloading methods
The scope of variables
Case study: generating random characters
Method abstraction and stepwise refinement
Programming exercises
Programming assignment

	To define methods with formal parameters
To invoke methods with actual parameters (i.e., arguments)
To define methods with a return value
To define methods without a return value
To pass arguments by value
To develop reusable code that is modular, easy to read, easy to debug, and easy to maintain
To write a method that converts hexadecimals to decimals
To use method overloading and understand ambiguous overloading
To determine the scope of variables
To apply the concept of method abstraction in software development
To design and implement methods using stepwise refinement

	12
13

	6
	Single-Dimensional Arrays
	Array basics
Case study: analyzing numbers
Case study: deck of cards
Copying arrays
Passing arrays to methods
Returning an array from a method
Case study: counting the occurrences of each letter
Variable-length argument lists
Searching arrays
Sorting arrays
The arrays class
Command-line arguments
Programming exercises
Programming assignment

	To describe why arrays are necessary in programming
To declare array reference variables and create arrays
To obtain array size using arrayRefVar.length and know default values in an array
To access array elements using indexes
To declare, create, and initialize an array using an array initializer
To program common array operations (displaying arrays, summing all elements, finding the minimum and maximum elements, random shuffling, and shifting elements)
To simplify programming using the for each loops
To apply arrays in application development (AnalyzeNumbers, DeckOfCards)
To copy contents from one array to another
To develop and invoke methods with array arguments and return valueTo define a method with a variable-length argument list
To search elements using the linear or binary search algorithm.
To sort an array using the selection sort approach
To use the methods in the java.util.Arrays class
To pass arguments to the main method from the command line

	14

	3
	Multi-Dimensional Arrays
	Two-dimensional array basics
Processing two-dimensional arrays
Passing two-dimensional arrays to methods
Case study: grading a multiple-choice test
Case study: finding the closest pair
Case study: sudoku
Multidimensional arrays
Programming exercises
Programming assignment

	To give examples of representing data using two-dimensional arrays
To declare variables for two-dimensional arrays, create arrays, and access array elements in a two-dimensional array using row and column indexes
To program common operations for two-dimensional arrays (displaying arrays, summing all elements, finding the minimum and maximum elements, and random shuffling)
To pass two-dimensional arrays to methods
To write a program for grading multiple-choice questions using twodimensional arrays
To solve the closest-pair problem using two-dimensional arrays
To check a Sudoku solution using two-dimensional arrays
To use multidimensional arrays

	15
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	16
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	17
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421524]Course 4: Java 2: Object-oriented programming
Duration: 13 days, 10 online teaching days, 2 day workshop days
Number of hours: 3 hours per online/workshop day, Total: 36 hours
ECTS: 3
	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1,2
	6
	Classes and objects
	Defining classes for objects
Example: defining classes and creating objects
Constructing objects using constructors
Accessing objects via reference variables
Using classes from the java library
Static variables, constants, and methods
Visibility modifiers
Data field encapsulation
Passing objects to methods
Array of objects
Immutable objects and classes
The scope of variables
The this reference
Programming exercises
Programming assignment

	To describe objects and classes, and use classes to model objects
To use UML graphical notation to describe classes and objects
To demonstrate how to define classes and create objects
To create objects using constructors
To access objects via object reference variables
To define a reference variable using a reference type
To access an object’s data and methods using the object member access operator (.)
To define data fields of reference types and assign default values for an object’s data fields
To distinguish between object reference variables and primitive data type variables
To use the Java library classes Date, Random, and Point2D
To distinguish between instance and static variables and methods
To define private data fields with appropriate getter and setter methods
To encapsulate data fields to make classes easy to maintain
To develop methods with object arguments and differentiate between primitive-type arguments and object-type arguments
To store and process objects in arrays
To create immutable objects from immutable classes to protect the contents of objects
To determine the scope of variables in the context of a class
To use the keyword this to refer to the calling object itself

	3,4
	6
	Object-oriented thinking

	Class abstraction and encapsulation
Thinking in objects
Class relationships
Case study: designing the course class
Case study: designing a class for stacks
Processing primitive data type values as objects
Automatic conversion between primitive types and Wrapper class types
The BigInteger and BigDecimal classes
The String class
The StringBuilder and StringBuffer classes
Programming exercises
Programming assignment

	To apply class abstraction to develop software
To explore the differences between the procedural paradigm and object-oriented paradigm
To discover the relationships between classes
To design programs using the object-oriented paradigm
To create objects for primitive values using the wrapper classes (Byte, Short, Integer, Long, Float, Double, Character, and Boolean)
To simplify programming using automatic conversion between primitive types and wrapper class types
To use the BigInteger and BigDecimal classes for computing very large numbers with arbitrary precisions
To use the String class to process immutable strings
To use the StringBuilder and StringBuffer classes to process mutable strings

	5,6
	6
	Inheritance and Polymorphism
	Superclasses and subclasses,
Superclasses and subclasses methods
Using super keyword
Overriding methods Overriding vs overloading, Polymorphism
Dynamic binding
Casting objects and the instanceof operator.
The Object’s equals method
The ArrayList class
Case study: a custom stack
The protected data and methods
Preventing extending and overriding
Programming exercises
Programming assignment

	To define a subclass from a superclass through inheritance
To invoke the superclass’s constructors and methods using the super keyword
To override instance methods in the subclass
To distinguish differences between overriding and overloading
To explore the toString() method in the Object class
To discover polymorphism and dynamic binding
To describe casting and explain why explicit downcasting is necessary
To explore the equals method in the Object class
To store, retrieve, and manipulate objects in an ArrayList
To construct an array list from an array, to sort and shuffle a list, andto obtain max and min element from a list
To implement a Stack class using ArrayList
To enable data and methods in a superclass accessible from subclasses using the protected visibility modifier
To prevent class extending and method overriding using the final

	7,8
	6
	Exception Handling and Text I/O

	Exception-Handling Overview
Exception types
More on exception handling
The finally clause
When to use exceptions
Rethrowing exceptions
Chained exceptions
Defining custom exception classes
The File class
File input and output
Reading data from the Web
Case study: Web Crawler
Programming exercises
Programming assignment
	To get an overview of exceptions and exception handling
To explore the advantages of using exception handling
To distinguish exception types: Error (fatal) vs. Exception (nonfatal)and checked vs. unchecked
To declare exceptions in a method header
To throw exceptions in a method
To write a try-catch block to handle exceptions
To explain how an exception is propagated
To obtain information from an exception object
To develop applications with exception handling
To use the finally clause in a try-catch block
To use exceptions only for unexpected errors
To rethrow exceptions in a catch block
 To create chained exceptions
To define custom exception classes
To discover file/directory properties, to delete and rename files/ directories, and to create directories using the File class
To write data to a file using the PrintWriter class
To use try-with-resources to ensure that the resources are closed automatically
To read data from a file using the Scanner class
To understand how data is read using a Scanner
To develop a program that replaces text in a file
To read data from the Web
To develop a Web Crawler

	9
10
	6
	Abstract Classes and Interfaces
	Abstract classes
Case study: the AbstractNumber Class
Case study: Calendar and GregorianCalendar
Interfaces
The Comparable interface
The Cloneable interface
Interfaces vs. abstract classes
Case Study: the Rational class
Class design guidelines
Programming exercises
Programming assignment

	To design and use abstract classes
To generalize numeric wrapper classes, BigInteger, and BigDecimal using the abstract Number class
To process a calendar using the Calendar and GregorianCalendar classes
To specify common behavior for objects using interfaces
To define interfaces and define classes that implement interfaces
To define a natural order using the Comparable interface
To make objects cloneable using the Cloneable interface
To explore the similarities and differences among concrete classes, abstract classes, and interfaces
To design the Rational class for processing rational numbers
To design classes that follow the class-design guidelines

	11
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	12
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	13
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421525]Course 5: Java 3: GUI Programming
Duration: 17 days, 14 online teaching days, 2 day workshop days
Number of hours: 3 hours per online/workshop day, Total: 48 hours
ECTS: 4
	Day
	Hours
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1,2
	6
	Swing Graphical User Interfaces Basics (GUI)
	Swing vs. AWT
The Java GUI API
Frames
Layout Managers
Using Panels as Subcontainers
The Color Class
The Font Class
Common Features of Swing GUI Components
Image Icons
JButton
JCheckBox
JRadioButton
Labels
Text Fields
Programming exercises
Programming assignment
	To distinguish between Swing and AWT
To describe the Java GUI API hierarchy
To create user interfaces using frames, panels, and simple GUI components .
To understand the role of layout managers and use the FlowLayout, GridLayout, and BorderLayout managers to lay out components in a container
To use JPanel to group components in a subcontainer
To create objects for colors using the Color class
To create objects for fonts using the Font class
To apply common features such as borders, tool tips, fonts, and colors on Swing components
To decorate the border of GUI components
To create image icons using the ImageIcon class.To create and use buttons using the JButton class.
To create and use check boxes using the JCheckBox class
To create and use radio buttons using the JRadioButton class
To create and use labels using the JLabel class
To create and use text fields using the JTextField class

	3,4
	6
	Graphics in Java
	The Graphics class
Drawing Strings, Lines, Rectangles, and Ovals
Case study: The FigurePanel class
Drawing Arcs
Drawing Polygons and Polylines
Centering a String using the FontMetrics class
Case study: The MessagePanel class
Case study: The StillClock class
Displaying images
Case study: The ImageViewer class
Programming exercises
Programming assignment
	To draw graphics using the methods in the Graphics class
To override the paintComponent method to draw graphics on a GUI component
To use a panel as a canvas to draw graphics
To draw strings, lines, rectangles, ovals, arcs, and polygons
To obtain font properties using FontMetrics and to display a text centered in a panel
To display an image on a GUI component
To develop the reusable GUI components FigurePanel, MessagePanel, StillClock, and ImageViewer

	5,6
	6
	Java FX - Basics
	JavaFX vs Swing and AWT
The basic structure of a JavaFX program
Panes, UI Controls, and Shapes
Property binding
Common properties and methods for Nodes
The Color class
The Font class
The Image and ImageView classes
Layout Panes
Shapes
Case study: The ClockPane class
Programming exercises
Programming assignment
	To distinguish between JavaFX, Swing, and AWT
To write a simple JavaFX program and understand the relationship among stages, scenes, and nodes
To create user interfaces using panes, UI controls, and shapes
To update property values automatically through property binding
To use the common properties style and rotate for nodes
To create colors using the Color class
To create fonts using the Font class
To create images using the Image class and to create image views using the ImageView class
To layout nodes using Pane, StackPane, FlowPane, GridPane, BorderPane, HBox, and VBox
To display text using the Text class and create shapes using Line,Circle, Rectangle, Ellipse, Arc, Polygon, and Polyline
To develop the reusable GUI component ClockPane for displaying an analog clock

	7,8
	6
	Event Driven Programming
	Events and Event Sources
Registering Handlers and Handling Events
Inner classes
Anonymous Inner class handlers
Simplifying Event Handling Using Lambda Expressions
Case study: Loan Calculator
Mouse events
Key events
Listeners for Observable Objects
Animation
Case study: Bouncing ball
Programming exercises
Programming assignment
	To get a taste of event-driven programming
To describe events, event sources, and event classes
To define handler classes, register handler objects with the source object, and write the code to handle events
To define handler classes using inner classes
To define handler classes using anonymous inner classes
To simplify event handling using lambda expressions
To develop a GUI application for a loan calculator
To write programs to deal with MouseEvents
To write programs to deal with KeyEvents
To create listeners for processing a value change in an observable object
To use the Animation, PathTransition, FadeTransition, and Timeline classes to develop animations
To develop an animation for simulating a bouncing ball

	9
10
11
12
	12
	JavaFX UI Controls and Multimedia
	Labeled and Label
Button
CheckBox
RadioButton
TextField
TextArea
ComboBox
ListView
ScrollBar
Slider
Case study: Developing a Tic-Tac-Toe game
Video and Audio
Case study: National Flags and Anthems
Programming exercises
Programming assignment
	To create graphical user interfaces with various user-interface controls
To create a label with text and graphic using the Label class and explore properties in the abstract Labeled class
To create a button with text and graphic using the Button class and set a handler using the setOnAction method in the abstract ButtonBase class (§16.3).
To create a check box using the CheckBox class
To create a radio button using the RadioButton class and group radio buttons using a ToggleGroup
To enter data using the TextField class and password using the PasswordField class
To enter data in multiple lines using the TextArea class
To select a single item using ComboBox
To select a single or multiple items using ListView
To select a range of values using ScrollBar
To select a range of values using Slider and explore differences between ScrollBar and Slider
To develop a tic-tac-toe game
To view and play video and audio using the Media, MediaPlayer, and MediaView
To develop a case study for showing the national flag and playing anthem

	13

	3
	Binary I/O
	How is text I/O handled in Java?
Text I/O vs. binary I/O
Binary I/O classes
Case study: Copying files
Object I/O
Random-access files
Programming exercises
Programming assignment
	To discover how I/O is processed in Java
To distinguish between text I/O and binary I/O
To read and write bytes using FileInputStream and FileOutputStream
To filter data using the base classes FilterInputStream and FilterOutputStream
To read and write primitive values and strings using DataInputStream and DataOutputStream
To improve I/O performance by using BufferedInputStream and BufferedOutputStream
To write a program that copies a file
To store and restore objects using ObjectOutputStream and ObjectInputStream
To implement the Serializable interface to make objects serializable
To serialize arrays
To read and write files using the RandomAccessFile class

	14

	3
	Software Testing with JUnit
	Software unit testing.
JUnit test
Metods of assertions validation
Testing of aggregations.
Pameters in testing.
Testing of exceptions.
Use of @Rule
Programming exercises
Programming assignment
	To understand what is unit testing.
To learn how to use JUnit test
To learn how to validate assertions.
To learn how to test aggregations.
To understand what are parameters in testing.
To learn how to test exceptions.
To learn to use @Rule.

	15
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	16
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	17
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421526]Course 6: Java 4: Data Structures and Algorithms – Part A
Duration: 17 days, 14 online teaching days, 2 day workshop days, 4 ECTS
Number of hours: 3 hours per online/workshop day, Total: 45 hours
	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1,2
	6
	Recursion
	Recursion Definition,
Case Study: Computing Factorials,
Case Study: Computing Fibonacci Numbers, Problem Solving Using Recursion,
Recursive Helper Methods.
Case Study: Tower of Hanoi,
Recursion vs. Iteration, Tail Recursion.
Programming exercises
Programming assignment
	To describe what a recursive method is and the benefits of usingrecursion
To develop recursive methods for recursive mathematical functions
To explain how recursive method calls are handled in a call stack
To solve problems using recursion
To use an overloaded helper method to design a recursive method
To implement a selection sort using recursion
To implement a binary search using recursion
To get the directory size using recursion
To solve the Tower of Hanoi problem using recursion
To draw fractals using recursion
To discover the relationship and difference between recursion and iteration
To know tail-recursive methods and why they are desirable

	3,4
	6
	Generics
	Motivations and benefits
Defining generic classes and interfaces
Generic methods
Case study: sorting an array of objects
Raw types and backward compatibility
Wildcard generic types
Erasure and restrictions on generics
Case study: generic matrix class
Programming exercises
Programming assignment
	To describe the benefits of generics
To use generic classes and interfaces
To define generic classes and interfaces
To explain why generic types can improve reliability and readability
To define and use generic methods and bounded generic types
To develop a generic sort method to sort an array of Comparableobjects To use raw types for backward compatibility
To explain why wildcard generic types are necessary
To describe generic type erasure and list certain restrictions and limitations on generic types caused by type erasure
To design and implement generic matrix classes

	5,6
	6
	List, Stack, Queue and PriorityQueue
	Collections,
Iterators,
Lists,
The Comparator Interface,
Static Methods for Lists and Collections
Case Study: Bouncing Balls,
Vector and Stack Classes
Programming exercises
Programming assignment
	To explore the relationship between interfaces and classes in the Java Collections Framework hierarchy
To use the common methods defined in the Collection interface for operating collections
To use the Iterator interface to traverse the elements in a collection
To use a foreach loop to traverse the elements in a collection
To explore how and when to use ArrayList or LinkedList to store a list of elements
To compare elements using the Comparable interface and the Comparator interface
To use the static utility methods in the Collections class for sorting, searching, shuffling lists, and finding the largest and smallest element in collections
To develop a multiple bouncing balls application using ArrayList
To distinguish between Vector and ArrayList and to use the Stack class for creating stacks
To explore the relationships among Collection, Queue, LinkedList, and PriorityQueue and to create priority queues using the PriorityQueue class
To use stacks to write a program to evaluate expressions

	7,8
	6
	Set and Map
	Sets,
Comparing the performance of Sets and Lists,
Case study: counting keywords
Maps.
Case study: Occurrences of words,
Singleton and Unmodifiable Collections and Maps
Programming exercises
Programming assignment
	To store unordered, nonduplicate elements using a set
To explore how and when to use HashSet LinkedHashSet or TreeSet to store a set of elements.
To compare the performance of sets and lists
To use sets to develop a program that counts the keywords in a Java source file
To tell the differences between Collection and Map and describe when and how to use HashMap, LinkedHashMap, or TreeMap to store values associated with keys
To use maps to develop a program that counts the occurrence of the words in a text
To obtain singleton sets, lists, and maps, and unmodifiable sets, lists, and maps, using the static methods in the Collections class

	9
10
11
12
	12
	Developing Efficient Algorithms
	Measuring algorithm efficiency using big o notation
Examples: determining big O
Analyzing algorithm time complexity
Finding Fibonacci numbers using dynamic programming
Finding greatest common divisors using Euclid’s algorithm
Efficient algorithms for finding prime numbers
Finding the closest pair of points using divide-and-conquer
Solving the eight queens problem using backtracking
Computational geometry: finding a convex hull
Programming exercises
Programming assignment
	To estimate algorithm efficiency using the Big O notation
To explain growth rates and why constants and nondominating terms can be ignored in the estimation
To determine the complexity of various types of algorithms).
To analyze the binary search algorithm
To analyze the selection sort algorithm
To analyze the Tower of Hanoi algorithm
To describe common growth functions (constant, logarithmic, loglinear, quadratic, cubic, exponential)
To design efficient algorithms for finding Fibonacci numbers using dynamic programming
To find the GCD using Euclid’s algorithm
To find prime numbers using the sieve of Eratosthenes
To design efficient algorithms for finding the closest pair of points using the divide-and-conquer approach
To solve the Eight Queens problem using the backtracking approach
To design efficient algorithms for finding a convex hull for a set of
points

	13
14
	6
	Sorting
	Insertion Sort
Bubble Sort
Merge Sort
Quick Sort
Heap Sort
Bucket Sort and Radix Sort
External Sort
Programming exercises
Programming assignment
	To study and analyze time complexity of various sorting algorithms
To design, implement, and analyze insertion sort
To design, implement, and analyze bubble sort
To design, implement, and analyze merge sort
To design, implement, and analyze quick sort
To design and implement a binary heap
To design, implement, and analyze heap sort
To design, implement, and analyze bucket sort and radix sort
To design, implement, and analyze external sort for files that have a large amount of data

	15
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	16
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	17
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421527]Course 7: Java 5: Data Structures and Algorithms – Part B
Duration: 16 days, 13 online teaching days, 2 day workshop days, 4 ECTS
Number of hours: 3 hours per online/workshop day, Total: 45 hours

	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1,2

	6
	Implementing Lists, Stacks, Queues,
and Priority Queues
	Common Features for Lists
Array Lists
Linked Lists
Stacks and Queues
Priority Queues
Programming exercises
Programming assignment
	To design common features of lists in an interface and provide skeleton implementation in a convenience abstract class
To design and implement an array list using an array
To design and implement a linked list using a linked structure
To design and implement a stack class using an array list and a queue class using a linked list
To design and implement a priority queue using a heap

	3,4
	6
	Binary Search Trees
	Binary search srees
Deleting elements from a BST
Tree visualization and MVC
Iterators
Case study: data compression
Programming exercises
Programming assignment
	To design and implement a binary search tree
To represent binary trees using linked data structures
To search an element in a binary search tree
To insert an element into a binary search tree
To traverse elements in a binary tree
To design and implement the Tree interface, AbstractTree class, and the BST class
To delete elements from a binary search tree
To display a binary tree graphically
To create iterators for traversing a binary tree
To implement Huffman coding for compressing data using a binary tree

	5,6
	6
	AVL Trees
	Rebalancing Trees
Designing Classes for AVL Trees
Overriding the insert Method
Implementing Rotations
Implementing the delete Method
The AVLTree Class
Testing the AVLTree Class
AVL Tree Time Complexity Analysis
Programming exercises
Programming assignment
	To know what an AVL tree is
To understand how to rebalance a tree using the LL rotation, LR rotation, RR rotation, and RL rotation
To design the AVLTree class by extending the BST class
To insert elements into an AVL tree
To implement tree rebalancing
To delete elements from an AVL tree
To implement the AVLTree class
To test the AVLTree class
To analyze the complexity of search, insertion, and deletion operations in AVL trees

	7,8
	6
	Hashing
	What Is Hashing?
Hash Functions and Hash Codes
Handling Collisions Using Open Addressing
Handling Collisions Using Separate Chaining
Load Factor and Rehashing
Implementing a Map Using Hashing
Implementing Set Using Hashing
Programming exercises
Programming assignment
	To understand what hashing is and what hashing is used for
To obtain the hash code for an object and design the hash function to map a key to an index
To handle collisions using open addressing
To know the differences among linear probing, quadratic probing, and double hashing (§27.4).
To handle collisions using separate chaining
To understand the load factor and the need for rehashing
To implement MyHashMap using hashing
To implement MyHashSet using hashing

	9
10
11
	9
	Graphs and Applications
	Basic Graph Terminologies
Representing Graphs
Modeling Graphs
Graph Visualization
Graph Traversals
Depth-First Search (DFS)
Case Study: The Connected Circles Problem
Breadth-First Search (BFS)
Case Study: The Nine Tails Problem
Programming exercises
Programming assignment
	To model real-world problems using graphs and explain the SevenBridges of Königsberg problem
To describe the graph terminologies: vertices, edges, simple graphs, weighted/unweighted graphs, and directed/undirected graphs
To represent vertices and edges using lists, edge arrays, edge objects, adjacency matrices, and adjacency lists
To model graphs using the Graph interface, the AbstractGraph class, and the UnweightedGraph class
To display graphs visually
To represent the traversal of a graph using the AbstractGraph.Tree class
To design and implement depth-first search
To solve the connected-circle problem using depth-first search
To design and implement breadth-first search
To solve the nine-tail problem using breadth-first search

	12
13
	6
	Weighted Graphs and Applications
	Representing Weighted Graphs
The WeightedGraph Class
Minimum Spanning Trees
Finding Shortest Paths
Case Study: The Weighted Nine Tails Problem
Programming exercises
Programming assignment
	To represent weighted edges using adjacency matrices and adjacency lists
To model weighted graphs using the WeightedGraph class that extends the AbstractGraph class
To design and implement the algorithm for finding a minimum spanning tree
To define the MST class that extends the Tree class
To design and implement the algorithm for finding single-source shortest paths
To define the ShortestPathTree class that extends the Tree class
To solve the weighted nine tails problem using the shortest-path algorithm

	13
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	14
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	15
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421528]Course 8: Java 6: Advanced Java Programming
Duration: 15 days, 12 online teaching days, 2 day workshop days, 4 ECTS
Number of hours: 3 hours per online/workshop day, Total: 42 hours

	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1
2
3
4

	12
	Multithreading and Parallel Programming
	Thread Concepts
Creating Tasks and Threads
The Thread Class
Case Study: Flashing Text
Thread Pools
Thread Synchronization
Synchronization Using Locks
Cooperation among Threads
Case Study: Producer/Consumer
Blocking Queues
Semaphores
Avoiding Deadlocks
Thread States
Synchronized Collections
Parallel Programming
Programming exercises
Programming assignment

	To get an overview of multithreading
To develop task classes by implementing the Runnable interface
To create threads to run tasks using the Thread class
To control threads using the methods in the Thread class
To control animations using threads and use Platform.runLater to run the code in the application thread
To execute tasks in a thread pool
To use synchronized methods or blocks to synchronize threads to avoid race conditions
To synchronize threads using locks
To facilitate thread communications using conditions on locks
To use blocking queues (ArrayBlockingQueue, LinkedBlockingQueue, PriorityBlockingQueue) to synchronize access to a queue
To restrict the number of concurrent tasks that access a shared resource using semaphores
To use the resource-ordering technique to avoid deadlocks
To describe the life cycle of a thread
To create synchronized collections using the static methods in the Collections class
To develop parallel programs using the Fork/Join Framework

	5,6
	6
	Network programming
	Client/Server Computing
The InetAddress Class
Serving Multiple Clients
Sending and Receiving Objects
Case Study: Distributed Tic-Tac-Toe Games
Programming exercises
Programming assignment

	To explain terms: TCP, IP, domain name, domain name server, streambased communications, and packet-based communications
To create servers using server sockets and clients using client sockets
To implement Java networking programs using stream sockets
To develop an example of a client/server application
To obtain Internet addresses using the InetAddress class
To develop servers for multiple clients
To send and receive objects on a network
To develop an interactive tic-tac-toe game played on the Internet

	7,8
	6
	Database programming (JDBC)
	Relational Database Systems
SQL
JDBC
PreparedStatement
CallableStatement,
Retrieving Metadata
Programming exercises
Programming assignment

	Understanding relational databases concept and RDBMS systems. Understanding the relational model, relational data structure, restrictions and language.
SQL use in working with relational databases. Set up and usage of JDBC.
Application of memorized SQL procedures and functions.
Work with metadata about a database.

	9
10
	6
	Java Persistence API
	Entity Relations,
Automated generation of JPA entities
Programming exercises
Programming assignment
	Understanding ORM and complete mastery of the application of ORM tools in working with databases.

	11
12
	6
	Java Hibernate ORM
	Hibernate ORM –
Mapping objects in database
Example of creation of a persistent class
Hibernate Annotations
Hibernate Query Language - HQL
Criteria of selection of objects in HQL query
Using SQL in Hibernate environment
Hibernate cashing
Hibernate batch processing
Hibernate interceptors
Programming exercises
Programming assignment
	To implement Java Hibernate ORM in Java applications.

	13
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	14
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	15
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421529]Course 9: Java 7: Java Enterprise Edition
Duration: 24 days, 21 online teaching days, 2 day workshop days, 7 ECTS
Number of hours: 3 hours per online/workshop day, Total: 69 hours

	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1
2

	6
	Java EE - Servlets
	Java EE Platform
Introduction to Servlets
Creating and Deploying Servlets
Data Flow
Servlet and Sessions
GlassFish Server
Programming exercises
Programming assignment
	To understand the concept of distributed systems and Java Enterprise Edition platform basics.
Ability to create and use servelts in Java enterprise applications.

	3
4
5
6

	12
	Java Server Pages (JSP)
	JSP Architecture
JSP Life Cycle
JSP Syntax
JSP Directives
JSP Actions
JSP Imlicit Objects
Form Processing
JSP Filters
Cookies Handling in JSP
File Upload in JSP
Date Handling in JSP
Redirection in JSP
JSTL - JavaServer Pages Standard Tag Library
JSP - Databases
JSP - JavaBean
JSP – Expression Language
JSP Internationalization
Programming exercises
Programming assignment
	Using JavaServer Pages (JSP), web pages’ development technologies supporinng dynamic content application, and enabling Java code insertion into HTML documents.
Mastering the advanced concept of application principles of JSP pages in JAVA web applications.

	7
8
9
10

	12
	Java Server Faces (JSF)
	Introduction to JavaServer Faces
Forms in JSF
Creating CDI named bean, Implementing the confirmation page,
JSF Validation.
Facelets templating, Resource library contracts, PrimeFaces Component Library,
ICEFaces Component Library,
RichFaces Component Library
Programming exercises
Programming assignment
	Using JSF technology for Java web application development. Developing advanced JSF applications, with simplified approach through application of JSF component libraries.

	11
12

	6
	RESTFul Web Services with JAX – RS
	Generating a RESTful web service from an existing database
Testing RESTful web service
Generating RESTful Java client code
Generating RESTful JavaScript clients
for our RESTful web services
Programming exercises
Programming assignment
	Understanding and use of RESTFul Web Services with JAX – RS.

	13
14
	6
	Context and Dependency Injection
	Introduction to CDI,
Qualifiers,
Sterotypes,
Interceptor Binding
Types ,
Custom CDI
Scopes
Programming exercises
Programming assignment
	Understanding and use of CDI concepts and techniques in Java EE applications.

	15
16
	6
	JMS and Message Driven Beans
	Introduction to JMS,
Creating JMS resources,
Implementing a JMS message producer,
Consuming JMS messages with message-driven beans
Programming exercises
Programming assignment
	Understanding and use of Java Messaging System and message driven beans in Java EE applications.

	17
18
	6
	Java API for JSON processing
	JSON-P object model API,
Generating JSON data with the JSON-P object
model API ,
Parsing JSON data with the JSON-P object
model API ,
JSON-P streaming API,
Generating JSON data with the JSON-P
streaming API,
Parsing JSON data with the JSON-P streaming API
Programming exercises
Programming assignment
	Understanding and use of Java EE mechanisms for JSON processing

	19

	3
	Java API for WebSocket
	Examining the WebSocket code using samples included with NetBeans,
Echo Application,
Examining the generated Java code , Building our own WebSocket
applications,
Java EE, WebSocket, JS i HTML 5 – Case Study
Programming exercises
Programming assignment
	Competence to create individual WebSocket applications.

	20
21

	6
	Implementing the Business Tier with Session Beans
	Introducing session beans
Creating a session bean,
Accessing the bean from a client,
Session bean transaction management
Implementing aspect-oriented programming with interceptors
EJB Timer servis
Generating session beans from JPA entities
Programming exercises
Programming assignment
	To implement Session beans in Java EE applications.

	22
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	23
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	24
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

Course 10 Java 8: Java Programming on the Android platform
Duration: 14 days, 11 online teaching days, 2 day workshop days, 5 ECTS
Number of hours: 3 hours per online/workshop day, Total: 39 hours

	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1

	3
	
	
	

	2
3
	6
	
	
	

	4
5
	6
	
	
	

	6
7
	6
	
	
	

	8
9

	6
	
	
	

	10
	3
	
	
	

	11
12
13
	9
	
	
	

	14
	3
	
	
	

	15
	3
	
	
	

	16
	3
	F2F Project Workshop
(in BMU computer rooms, optionally online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	17
	3
	F2F Project Workshop
(in BMU computer rooms, optionally online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	18
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421530]Course 11: Software Development Process and Methodologies
Duration: 18 days, 15 online teaching days, 2 day workshop days, 5 ECTS
Number of hours: 3 hours per online/workshop day, Total: 21 hours

	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1

	3
	Introduction
	Professional software development
Software engineering ethics
Case studies
Programming exercises
Programming assignment
	To understand what software engineering is and why it is important;
To understand that the development of different types of software
systems may require different software engineering techniques;
To understand some ethical and professional issues that are important
for software engineers;
To have been introduced to three systems, of different types, that will be
used as examples throughout the book.

	2
3
	6
	Software Processes
	Software process models
Process activities
Coping with change
The Rational Unified Process
Programming exercises
Programming assignment
	To understand the concepts of software processes and software process
models;
To have been introduced to three generic software process models and
when they might be used;
To know about the fundamental process activities of software
requirements engineering, software development, testing, and
evolution;
To understand why processes should be organized to cope with changes
in the software requirements and design;
To understand how the Rational Unified Process integrates good software
engineering practice to create adaptable software processes.

	4
5
	6
	Agile Software Development
	Agile methods
Plan-driven and agile development
Extreme programming
Agile project management
Scaling agile methods
Programming exercises
Programming assignment

	To understand the rationale for agile software development methods, the agile manifesto, and the differences between agile and plan-driven
development;
To know the key practices in extreme programming and how these relate to the general principles of agile methods;
To understand the Scrum approach to agile project management;
To be aware of the issues and problems of scaling agile development methods to the development of large software systems.

	6
7
	6
	Requirements
engineering
	Functional and non-functional requirements
The software requirements document
Requirements specification
Requirements engineering processes
Requirements elicitation and analysis
Requirements validation
Requirements management
Programming exercises
Programming assignment

	To understand the concepts of user and system requirements and
why these requirements should be written in different ways;
To understand the differences between functional and nonfunctional
software requirements;
To understand how requirements may be organized in a software
requirements document;
To understand the principal requirements engineering activities of
elicitation, analysis and validation, and the relationships between
these activities;
To understand why requirements management is necessary and how
it supports other requirements engineering activities

	8
9

	6
	System modeling
	Context models
Interaction models
Structural models
Behavioral models
Model-driven engineering
Programming exercises
Programming assignment

	To understand how graphical models can be used to represent
software systems;
To understand why different types of model are required and the
fundamental system modeling perspectives of context, interaction,
structure, and behavior;
To have been introduced to some of the diagram types in the Unified
Modeling Language (UML) and how these diagrams may be used in
system modeling;
To be aware of the ideas underlying model-driven engineering, where a
system is automatically generated from structural and behavioral
models.

	10
	3
	Architectural design
	Architectural design decisions
Architectural views
Architectural patterns
Application architectures
Programming exercises
Programming assignment

	To understand why the architectural design of software is important;
To understand the decisions that have to be made about the system
architecture during the architectural design process;
To have been introduced to the idea of architectural patterns, well-tried
ways of organizing system architectures, which can be reused in
system designs;
To know the architectural patterns that are often used in different types
of application system, including transaction processing systems and
language processing systems.

	11
12
13
	9
	Design and
implementation
	Object-oriented design using the UML
Design patterns
Implementation issues
Open source development
Programming exercises
Programming assignment

	To understand the most important activities in a general, objectoriented
design process;
To understand some of the different models that may be used to
document an object-oriented design;
To know about the idea of design patterns and how these are a way
of reusing design knowledge and experience;
To have been introduced to key issues that have to be considered when
implementing software,

	14
	3
	Software testing
	Development testing
Test-driven development
Release testing
User testing
Programming exercises
Programming assignment

	To understand the stages of testing from testing, during development
to acceptance testing by system customers;
To have been introduced to techniques that help you choose test
cases that are geared to discovering program defects;
To understand test-first development, where you design tests before
writing code and run these tests automatically;
To know the important differences between component, system,
and release testing and be aware of user testing processes and
techniques.

	15
	3
	Software evolution
	Evolution processes
Program evolution dynamics
Software maintenance
Legacy system management
Programming exercises
Programming assignment
	To understand that change is inevitable if software systems are to remain useful and that software development and evolution may be integrated in a spiral model;
To understand software evolution processes and influences on these
processes;
To have learned about different types of software maintenance and
the factors that affect maintenance costs; and
To understand how legacy systems can be assessed to decide whether they should be scrapped, maintained, reengineered,
or replaced.

	16
	3
	F2F Project Workshop
(in BMU computer rooms, optionally online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	17
	3
	F2F Project Workshop
(in BMU computer rooms, optionally online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	18
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

[bookmark: _Toc388421531]Course 12: Software Construction
Duration: 21 days, 18 online teaching days, 2 day workshop days, 6 ECTS
Number of hours: 3 hours per online/workshop day, Total: 60 hours

	Day
	Ho-urs
	Teaching units
	Topics
	Objectives – knowledge or skills that the student should receive

	1
2

	6
	Software Construction Fundamentals
	1.1. Minimizing Complexity
1.2. Anticipating Change
1.3. Constructing for Verification
1.4. Reuse
1.5. Standards in Construction
	To understand what is software construction.

	3
4

	6
	Managing Construction
	2.1. Construction in Life Cycle Models
2.2. Construction Planning
2.3. Construction Measurement
	To be able to manage software construction.

	5
6
7
	9
	Practical Considerations
	3.1. Construction Design
3.2. Construction Languages
3.3. Coding
3.4. Construction Testing
3.5. Construction for Reuse
3.6. Construction with Reuse
3.7. Construction Quality
3.8. Integration
	To implement software construction technics in design, coding, testing, software reusing, quality and insoftware integration

	8
9

	6
	Construction Technologies
	4.1. API Design and Use
4.2. Object-Oriented Runtime Issues
4.3. Parameterization and Generics
4.4. Assertions, Design by Contract, and Defensive Programming

	To learn to implement design API
To understand OO runtime issues
To implement parameterization and generics
To implement assertions, design by contract and defensive programming

	10
11

	6
	
	4.5. Error Handling, Exception Handling, and Fault Tolerance
4.6. Executable Models
4.7. State-Based and Table-Driven Construction Techniques
	To implement error handling, exeption handling and fault tolerance
To use executable models
To implement state-based and table-driven construction techniques

	12
13

	6
	
	4.8. Runtime Configuration and Internationalization
4.9. Grammar-Based Input Processing
4.10. Concurrency Primitives
4.11. Middleware
	To implement runtime configuration and internationalization
To implement grammar-based input processing
To implement concurrency primitives
To implement middleware

	14
15

	6
	
	4.12. Construction Methods for Distributed Software
4.13. Constructing Heterogeneous Systems
4.14. Performance Analysis and Tuning
4.15. Platform Standards
4.16. Test-First

	To implement construction methods for distributed software
To implement constructing of heterogeneous systems
To use performance analysis and tunng
To implement platform standards
To implement test/first approach

	17
18

	6
	Software Construction
Tools

	5.1. Development Environments
5.2. GUI Builders
5.3. Unit Testing Tools
5.4. Profiling, Performance Analysis, and Slicing Tools
Matrix of Topics vs. Reference Material

	To be able to use development environments and tools, such as GUI builders, unit testing tools, profiling, performance analysis and slicing tools

	19
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Distribution of projects assignments
Students work on their project tasks with assistance of instructors
	To learn how to specify a project
To learn how to organize the project and to break-down tasks
To implement acquired knowledge during the course

	20
	3
	F2F Project Workshop
(in BMU computer rooms, optionally -online)
	Students work on their project tasks with assistance of instructors
	To develop necessary Java programs
To realize all programming tasks of students’ project.
Presentation of the project report

	21
	3
	Final examination
(in BMU computer rooms)
	Students get examination questions and problems
Exam duration - 3 hours
	To evaluate knowledge and skills acquired during the course

Course 13 Software Development Project
Duration: 16 days, 5 online teaching days, 10 day workshop days, 4 ECTS
Number of hours: 3 hours per online/workshop day, Total: 45 hours

This course is final, the final act of preparing a student for concrete work on software development, first in the company where the professional practice will work, and then in the company where he will be employed as a Java programmer. In this sense, the object is designed to be implemented in two parts.
In the first part, for a period of five days, students are studying through teaching materials that partly repeat parts of the program from certain subjects that are necessary for organized, project-driven software development, and partly enables them to get acquainted with teaching materials, which are not covered previous items of this short program.
In the second part, for a duration of 10 days, students in teams work on the realization of project tasks, in the computer classrooms of the university (3 hours a day). Students who are prevented from implementing this part of the lessons in computer classrooms will be able to work on project tasks from home because virtual project teams will be formed, working together on a project task, but communicating over the Internet.
This course aims to simulate more precisely the work in software development projects that are being implemented in software development companies, in order to prepare students better for working in such firms.

The course program contains the following teaching units:
1. Project management.
2. The organization of the team and the communication of the wives in the interim, and with the external actors.
3. Project planning.
4. Software quality management.
5. Software configuration management.
6. Object-oriented software engineering.
7. Workshop: Team Development Software (10 days)

[bookmark: _Toc388421533]Pedagogical Approach to SCHE courses
BMU SCHE Programming in Java targets the following categories of students:
· Bachelor degree holders with or without job, willing to change their profession and job
· Master degree holders interested to learn Java programming, as they need for their jobs
· Individuals that abandoned their bachelor studies and are seeking to get a quick qualification of a Java Developer (in 12 months) and find a job as soon as possible
· Fresh graduates from secondary schools not interested to get bachelor degrees and planning to get a Java Developer job
Some of students may be employed and they cannot be full-time students following F2F (face-to-face) courses. The same is the case with students not living in Belgrade or Niš, towns where BMU has campuses. Therefore, BMU decided to implement SCHE program providing (Figure 4.1):
· Online courses,
· F2F or online two days workshops at the end of each course, allowing students to realize their project assignments, and
· An exam after each course and its workshop.
[image:]
Figure 4.1: Three components of a SCHE Programming in Java course
Instead of academic organization of courses (4-5 courses per semester realized in parallel during 15 weeks), it is expected that a SCHE program may be more effective if courses are sequentially thought, as shown in Figure 4.2. Exams should demonstrated students’ ability to implement what they learnt. If they fail, they will have one additional exam. If they fall again, they cannot proceed with the SCHE program and must wait a new group of students of the SCHE Job Developer, and continue their program with the course that didn’t pass.
[image:]
Figure 4.2: Sequential implementation of courses of SCHE Programming in Java
Students will be organized in groups of 20, having their own tutor (one per group). Tutor will communicate with online students every days monitoring their work and giving them consultations. Tutors will also check results of given assignments to students and of their testing. Tutors will organize F2F or online workshops (for those not being able to participate in F2F workshops), aiming the course projects. Each student will get his project assignment that he must to complete by the end of workshop and before the exam, planned for the next day.
Figure 3.3 shows the organization of an online lesson. It consists of a number of topics and sub-topics. A topic or sub-topic consist of one or more sections that contain contents in form of multimedia web pages created by mDita Editor developed by BMU.
[image:]
Figure 4.3 : Organization of an online lesson with learning objects, related to topics and sub-topics using sections of different kindsF
[image:]Figure 4.4 shows the structure of an online lesson, consisting of learning units and topics. Students learn each topic by using many small sub-steps: Learning-Example-Task. Mapping of learning units into learning objects (LO) and topics into sections, we get an online lesson. An online lessons contains a number of learning objects with one or more sections. Sections may provide now knowledge concepts, examples, assignments, tests, video clips, forums or chats. First order learning objects (or LO) contains topic sections or/and sub/topic sections. Each section is multimedia web page that contains textual information, video and audio clips, listings of Java codes and evaluation sections, such as different kind of tests and assignments. Authors of coursesorganize online lessons as hierarchy of learning objects related to topics and sub-topics. Online lessons, topics and subtopics are specified according to knowledge units and topics defined in BOM (the Body of Knowledge) of the SCHE Programming in Java. Hours on online lessons are rough estimation of durations of online lessons, but the focus is on lessons’ content, not in their durations.
Figure 4.5 specifies a learning unit and its steps. Authors decide the granularity of their learning objects. A learning units could be implemented with one learnimg objects, but, may be implemented with more that one learining units. Leraning sub-steps are usually implemented with sections (web pages).
[image:]
Figure 4.5 Specification of a learning units
Delivery of online lessons id managed by LAMS (Learning Activity Management System). It was chosen as it supports the concepts of learning objects and learning activities, organized in processes with branching. It is necessary for achieving a kind of personalization of e-learning, as different learning content may be offered to different students or group of students, based on their ability to learn and their knowledge levels.
Figure 4.6 shows one section (web page) created by mDita editor.

[image:]
Figure 4.5: A section with learning content as shown to students by LAMS

The number of topics (first order LOs) may be different, depending of its content. The same is valid for topics and their sub-topics and sections. So, a course may have different number of lessons, with different number of learning objects for its topics, sub-topics and sections.
When planning the duration of each course, it is assumed that student can use online lessons provided by BMU e-Learning System, six day a week, and at least three learning hours per day (reading or watching video clips and listening the content of a lesson). Besides these three “learning hours”, it is expected that student spend one or more hours for doing tests and assignments related to a topic.

[bookmark: _Toc388421534]Plan for implementation of SCHE PROGRAMMING IN JAVA
The following Table 5.1 shows the plan for pilot implementation of SCHE PROGRAMMING IN JAVA, created according to the presented curriculum and adopted pedagogical approach.
[image:]

1

image2.jpeg
Co-funded by the
Erasmus+ Programme
of the European Union

image3.png
EUROPEAN ICT PROFILE FAMILY TREE

[
) =3 ¢

Enterprise
m
ervice Des

image4.png
Business Managémént Technical Manageme:nt

Design Development Service &

Operation

ENABLE

image5.png
~ —/DEVELOPMENT

image6.png
a.8uiD

cRuN

D.ENABLE

E.MANAGE

A5 nd BusinssStrategy Algnment
A2, Servce Level Mansgement

A3, Business Fan Develogment

A4 Product/Senice lanring

A5, Achtecure Desgn

A5, Appicaton Design

A7, Technology Trend Meritoring
A8, Sustinsble Development

A9, inoiating

8.1 Appicaton Development

8.2, Component Interation

83, Testing

8.4, Soluton Deployment

85, Documentaton froduction

8.6, Systems Engnering

1. User Support

€2 Change Support

€. Senvce Delvry

Ca.roblem Mansgement

D.1. nformation Secut Srtegy Development
D2.1CT Qualty Stategy Development
.3, Education an raiing Provion
D4 puchasing

D.5_Sales Poposal Development

0.6, Channel Mansgement

D.7.ales Management

D.5. Contract Management
5.9.Pescnel Development

.10, Iformtion and Knowedos Management
D.11. Neek entication

D.12. Digtal Marketing

£1. forecast Dvelopment
£2.Project and Porflio Mansgerment
£3.Risk Managerment

£.4. Rolationshp Mansgement
£5.Proces Improvement

£6.1CT Qualty Management

£7. Businss Changs Managerment
£5. nformation Securty Managerment
£9.5 Govemance

image7.png
Summary statement Builds/codes ICT solutions and specifies ICT products according to customer
needs.
Mission Ensures building and implementing of ICT applications. Contributes to

planning, low level design. Compiles diagnostic programs and designs and
writes code for operating systems and software to ensure optimum
efficiency and functionality.

Deliverables Accountable Responsible Contributor
o Hardware e Solution e Software Design
Component Documentation Description
e Software e Test Procedure
Component e Solution in Operation
Main task/s Develop component

.
Engineer component

e Shape documentation

e Provide component support beyond the first level
e Supply 3" Jevel support

e-competences B.1. Design and Development Level 3
(from e-CF)
B.2. Systems Integration Level 2
B.3. Testing Level 2
B.5. Documentation Production Level 3
C.4. Problem Management Level 3

KPI area Fully functional ICT components

image8.png
Dimension 3

eConpetence
profency lovs

11005, oated
toEQF w3108

image9.png
Dimension 2
eCompetence:

Title + generic
description

Dimension 3

e-Competence
proficency levels
1105, related
10 EQF levels 3108

Dimension 4

Knowiedge
examples
Knows/aware of
familar with

Skils examples
Isableto

B.BUILD

B.2. Component Integration

Integrates hardware, software of sub system components into an existing of 3 new system. Complies
with estabished processes and procedures such as, configuration management and package
‘maintenance. Takes ino account the compatblty of existing and new moduies 1o ensure system
integity, system interoperabilty and information security.Verfies and tests system capacity and
performance and documentation of successful integration.

Accounts for own and
others actons in the | speciat knowledge to

integration process. create 3 process for the
Comples with entireintegration cyce,
appropriate standards | indluding the

and change control | establishment of

procedures to maintain internal standards of
integrty of the overall | practice. Provdes
system functionalty and | leadership to marshal
relabilty.

old, exising and new hardware components/oftware programs/modes
the impact that system integration has on exising system/organisation

Interfacing techniques between modues,systems and components

Integration esting techniques.

Gevelopment 100l (e.. development envionment, managemen, source code access/
revision control)

best practice design techniques.

measure system performance before, during and afte system integration
ocument and record activies, problems and elated repair actvies

match customers’ needs with existing products

verfy that integrated systems capabiites and efficiency match specifications
secure/back-up data to ensure ntegrityduring system integration

image10.png
Dimensior

Dimension 2 B3, Testing

eCompetence: Constructs and executes systematic test procedures for ICT systems or ustomer usabilty
Title + generic requirements to establsh compliance with design specfication. Ensures that new of evised
description components or ystems perform to expectation. Ensures meeting of internal, external, national and

Intemational standards: incuding health and safety. usabilty, performance, refabilty or compatbilty.
Produces documents and repors 1o evidence certication requirements.

Level 4 Level s

Dimension 3

eCompetence perfoms simple Explots wide -
proficiency levels testsn stict knowledge tosupenvise ranging specialst
e1toes, rebted complancewith complex testing knowledge to reate

10EQF levels 3108 detailed
Instructions.

ocumented audit trail.

Dimension & techniques, nfrastructure and t0ols 1 b2 Used in the testng process
the ifecyc of 2 testing process.

the diferent srts of tests (unctionsl, ntegration, performance, usabilty, stess etc)

national and intemational standards defining qualty aiteria fo testing

‘web, doud and mobie technlogies and envronmental requirements

exmples

‘reate and manage a tst plan
manage and evaluate the test process
design testsof CT systems

prepare and conduc tess of ICT systems
report and document tets and resuts

image11.png
B. BUILD

Dimension 2 B.5. Documentation Production
e-Competence Produces documents describing products, services, components or applications to establish
Title + generic compliance with relevant documentation requirements. Selects appropriate style and media for
description presentation materials. Creates templates for document-management systems. Ensures that

functions and features are documented in an appropriate way. Ensures that existing documents
are valid and up to date

e-Competence Uses and applies Determines documentation | Adapts the level of - -
proficiency levels standards to define requirements takinginto | detail according to the

eltoes, related documentstructure. | account the purposeand | objective of the

0 EQF levels 3108 environment towhich it | documentation and the

applies. targeted population.

Dimension 4 ‘tools for production, editing and distribution of professional documents
« tools for multimedia presentation creation
— m““* different technical documents required for esigning, developing and deploying products,

applications and services.
Knows/aware of version control of documentation production
familiar with

Skills examples ‘observe and deploy effective use of corporate standards for publications
e prepare templates for shared publications

‘organise and control content management workfiow

keep publications aligned to the solution during the entire lifecycle

image12.png
Dimension 2

eCompetence:
Title + generc
desrpton

Dimension 3

Competence
profcency evds

&1 toes, dated
0EGFkevels 3108

C4. Problem Management

dentifies an resoves the oot cause of nclens.Tkes 2 proactve 3pproachfo avodance o
dentficaon of 100t cause of CT problems.Deploys 3 knowedge sstem based on recurenceof
comimon eors. Resoives or escaltes incidents. Optmisessstem of component perfomance.

Expiols spegalst
knowldge and indepth
undestandng of the T
Infrasiructure and problem
management process to
denty aiures and resohe:
wih minimum outage.
Makessound decisons n
emotnaly charged
envionments on
appropeiate action requied
tominimse busnes
impact. Rapiy dentes
faling component, selecs
atematives such 2 rpat,
teplace ot reconigure.

the organiation' overall T nfastructure and key components
the oganiaton rporting procedures

the rganiaton crical stuatio esclation procedures

the pplcation and avalabilty of diagnostcfoos

the ik between ystem nfrastructure elments and mpact of e on elted busingss
proceses.

moritor pogres o sues throughout Ifecyde and communicate effectely

dentiy potental aital component falles and take action o migateefects of falkre
Conduc sk managerment auds and act to miniTis exposures

alocate apropriate fesources 1 maitenance acttes, balancing ostand sk
commuricate at allevels o ensure 3ppropriteresources aredeploye Iternally or extrmaly
to minimse outages

image13.png
Abiity to Apply Knowledge Across Situations,

Functional/Disciplinary Skil

image14.png
Legal, Ethical, Social and Professional Practices

kills.

Soft S

juawadeue
vonewioul g eIEq

aInpayyay

@dueusanop g ASarens 191

image15.png
Software Desi nd Developme

Thisis about is the application of engineering to the design, development, and maintenance of software™.
It is necessary to understand how to develop or acquire software (information) systems that satisfy the
requirements of users and customers. Knowledge of methodologies and processes for developing systems is
also needed™.

a) Foundational knowledge required

Software elements of a computer system

Software architecture

Object-oriented design

User interface design

Software design process

Concept of developing requirements (including types and analysis techniques)
Programming languages and protocols

Iterative software development

Concept of system integration

b) e-Competence Framework references

A6 Application Design

B1 Application Development
B2 Component Integration
B4 Solution Deployment

B6 Systems Engineering

C1 User Support

) Examples of Job profiles envisioned

Systems Analyst
Systems Architect
Developer

Test Specialist
Systems Administrator
Network Specialist

d) Examples of specific Bodies of Knowledge, certification and training possibilities

SWEBOK v3.0 (Software Engineering Body of Knowledge — IEEE Computer Society)
IEEE - Certified Software Development Professional

CompTIA (Computing Technology Industry & Association)

Vendor certifications (Microsoft, Cisco, IBM, etc.)

OMG Certified UML® Professional (OCUP)

Application Services Library (ASL)

OPEN CITS (Open Group Certified IT Specialist)

image16.png
Human-Computer Interaction

Human-computer interaction (HCI) as defined by the Association for Computing Machinery (ACM) is “a
discipline concerned with the design, evaluation and implementation of interactive computing systems for
human use and with the study of major phenomena surrounding them”. It requires an understanding of the
importance of the user in developing ICT applications and systems, and involves developing a mindset that
recognises the importance of users, their work practices and organisational contexts. Topics covered could
include user-centred design methodologies, interaction design, ergonomics, accessibility standards and
cognitive psychology™™.

a) Foundational knowledge required

Models and theories of human-computer interaction (HCI)
Interaction design basics

HCI in the software process

Modelling rich interaction

Groupware, ubiquitous computing and augmented realities
Hypertext, multimedia, and the world wide web

b) e-Competence Framework references

A5 Architecture design

A6 Application design

A9 Innovating

B1 Application development
B2 Component integration
D11 Needs identification

) Examples of Job profiles envisioned

System Architect
Developer

Digital Media Specialist
Test Specialist
Network Specialist

d) Examples of specific Bodies of Knowledge, certification and training possibilities
= Usability Body of Knowledge (http://www.usabilitybok.org/)

image17.png
Software testing is an investigation conducted to provide stakeholders with information about the quality of
the product or service under test™. Software testing can also provide an objective, independent view of
the software to allow the business to appreciate and understand the risks of software implementation™”.
Test techniques include, but are not limited to, the process of executing a programme or application with
the intent of finding software bugs (errors or other defects)™™". Or software component.

a) Foundational knowledge required

Definition and concepts of structured testing
Testing principles

Testing types, methods & techniques

Life cycle testing

b) e-Competence Framework references

B2 Component Integration
B3 Testing

B4 Solution Deployment

E8 Information Security Management

) Examples of Job profiles envisioned

Developer

Test Specialist

Systems Administrator
Digital Media Specialist

d) Examples of specific Bodies of Knowledge, certification and training possibilities

= OPENCITS (Open Group Certified IT Specialist)
= ISTQB (International Software Testing Qualifications Board)()
= TMAP (Test Management Approach) ()

image18.png
Data management is the development, execution and supervision of plans, policies, programmes and
practices that control, protect, deliver and enhance the value of data and information assets™. An
understanding is required of how data is captured, represented, organised and retrieved from computer
files and databases™ .

a) Foundational knowledge required

Information and data modelling
Physical file storage techniques

Database management systems (DBMS)
Document, records and content management
Reference and master data management
Integrated data management

b) e-Competence Framework references

A6 Application Design

B1 Application Development

B6 Systems Engineering

C1 User Support

D10 Information and Knowledge Management

) Examples of Job profiles envisioned

Business Information Manager
Systems Architect

Developer

Test Specialist

Database Administrator
Systems Administrator
Network Specialist

d) Examples of specific Bodies of Knowledge, certification and training pos

= DAMA-DMBOK (Data Management BOK — DAMA International).
= Software Engineering Institute (SEI) Certification

image19.png
T

v

T |

P |

e R T e

e

T

T

o

e

T e

Tz

T o]

S

T !

LT I

P T T I

Fomewsooprn

[o s

s

o

image20.png
T

v

T |

P |

e R T e

e

T

T

o

e

T e

Tz

T o]

S

T !

LT I

P T T I

Fomewsooprn

[o s

s

o

image21.png
11108 PROFIES

|

o 5|

S

|

T P

e

[x]x

|

B

X x [x[x

X x [x] x

e

s s A

o]

x

x
e

e

e

ErTE

iy oy

T

e

S A

e

Swn worwsio 5

v vemea o o

[Ery—

skt ot T

[ET—

E—
ETT—

[Eer—

e —

e p——"

T

[rmsns

[oprations sndsrvics Mammgemnt

image22.png
11108 PROFIES

|

o 5|

S

|

T P

e

[x]x

|

B

X x [x[x

X x [x] x

e

s s A

o]

x

x
e

e

e

ErTE

iy oy

T

e

S A

e

Swn worwsio 5

v vemea o o

[Ery—

skt ot T

[ET—

E—
ETT—

[Eer—

e —

e p——"

T

[rmsns

[oprations sndsrvics Mammgemnt

image23.png
EQF
Level

Java
Developer

Junior Java
Developer

e-1

ed

e-Competence
proficiency levels

image24.png
Computer Science BOK 2013
Toowiedge Ares

[AR - Architecture and Organization S0DY OF
[+ CN - Computational science_ MWL
X
o
e oo
T

5 Sytems Fundmentas

7 SocaTisues s Profesiom s

Tommo
SWEBOK-V3 (2014)

o

[COMPUTING FOUNDATIONS
[METHEMATICAL FOUNDATIONS
(ENGINEERING FOUNDATIONS.

image25.png
Short Cycle Program

Learning Modules

image26.png
Certificate

e
gt
L

Short Cycle Program
Lessons

image27.png
BMU Bachelor

Degree Courses

image28.png
E-Competance: B.1. Application Development (Level 3)

K1 appropriate softvare programsimodules
K2 hardware componens, tools and hardware architctures,
K3 functional & technical designing

K state of the attechnologies

K5 programming languages

K6 Power consumption models of software and / o hardware
K7 DBMS

KB operating systems and software platiorms

K Intagrated development environment (IDE)

K10 rapid appiicaion development (RAD)

K11 IPR issues

K12 modeling technology and languages

K13 inteface definton languages (IDL)

K14 security

‘S1 explain and communicate the design / development t the customer
52 perform and evaluate test results against product specifications.
‘53 apply approprate software and | or hardware archtectures

4 davelop usar inerfaces, businss software componenis and
‘embedded software companents

'S5 manage and guarantes high levels of cohesion and qualty
6 use data modsis
7 perform and avaluats tast i the customer ortarget anvironment

58 cooperate with development tsam and with application designers

BMU Bachelor Courses

CS101 Introduction to OO Programming

CS102 Objects and Data Abstraction
Lol et

CS103 Algorithms and Data Structures

5330 Development of Mobile Appiications

SE201 Introduction to Software Engineering

‘SE211 Software Construction
—_—

IT101 IT Fundamentals.
Lo

17210 T Systems
S —

17350 Databases

I

1T370 Human-Computer Interaction

I

T390 Professional Practice and Ethics

©5220 Computer Architecture

5225 Operating System

IT381 Information Security and Safety

SE311 Software Design and Architecture.

SE321 Quality Assurance, Testing and Maintenance

image29.png
E-Competance: B.2. Component Integration (Level 2)

BMU Bachelor Courses

K1 old, existing and new hardware components / software C5220 Computer Architecture
programs / modules
K2 the impact that syste integration has on existing system / SE201 Introduction to Software Engineering
organisation
SE311 Software Design and Architecture
K3 inerfacing techniques between modules, systems and
jcomponeni) SE321 Quality Assurance, Testing and Maintenance

K4 integration testing techniques

K5 development ool (e.g. development environment, SE211 Software Consiruction
management source cods access evision contol)
5230 Distibuted Systems

‘S1 measure system performance before, during and afer system
integration

52 document and record activiies, problems and related repair
activities

‘53 match customers’ needs with existing products.

'S4 verify that integrated systems capabliies and efficiency match
specifications

S5 secure / back-up data to ensure integrity during system
integration

image30.png
E-Competance: B.3. Testing (Level 2)

BMU Bachelor Courses
K1 techniques, infrastructure and tools to be used in the testing

process SE321 Quality Assurance, Testing and Maintenance
K2 the lfecyce of a testing process

5225 Operating System
K3 the different sorts of tests (functional, inegration,

performance, usabilty, siress etc.)

K4 national and international standards defining qualiy criteia for
testing

K5 web, cloud and mobile technologies and environmental
requirements

1 create and manage a test plan
52 manage and evaluate the test process

53 design fests of ICT systems.

S4 prepare and conduc fests of ICT systems.
S5 report and document tests and resus

image31.png
BMU Bachelor Courses

K1 tools for production, editing and distribution of professional ‘5345 Management o Digital Conents
documents
K2 tools for mulimedia presentation creation 17370 Human-Computer Interaction

K3 different technical documents required for designing,

developing and deploying products,
applications and services.

K4 version control of documentation production

‘$1 observe and deploy effective use of corporate standards for
publications

52 prepare templates for shared publications
53 organise and control content management workfiow.

'S4 keep publications aligned to the solution during the entre.
ifecycle

image32.png
E-Competance: C.4. Problem Management (Level 3)

BMU Bachelor Courses

K1 the organisation's overall ICT infrastructure and key.
‘components IT270 1T Infrastructure
2 the orgenisalion's reporting procsdures SE321 Quality Assurance, Testing and Maintenance

K3 the organisation's critcal stuation escalation procedures
K4 the application and availabilty of diagnostic tools

K5 the link between system infrastructure elements and impact of
failue on related business processes.

S1 monitor progress of issues throughout ifecycle and
communicate effectively

'S2 identify potental critical component failures and take action to
mitigate effects of failure

'$3 conduct risk management audits and act to minimise
exposures.

'S4 allocate appropriate resources to maintenance activites,
balancing cost and risk

'S5 communicate at allevels o ensure appropriate resources are
deployed internally or extenally.
1o minimise outages

image33.png
e-compentences BMU Bachelor Courses

CS101 Introduction to OO Programming
o CS102 Objects and Data Abstraction
CS103 Algorithms and Data Structures

5330 Development of Mobile Applications

velopment (Level 3)

'SE201 Introduction to Software Enginering

'SE211 Software Construction

1T101 1T Fundamentals

11210 T Systems

IT350 Databases

17370 Human-Computer Ineraction

T390 Professional Practice and Ethics

©5220 Computer Architecture.

5225 Operating System
17381 Information Security and Safety

SE311 Software Design and Architecture

'SE321 Qualty Assurance, Testing and Maintenance

CS230 Distributed Systems
11270 IT Infrastructure

5345 Management of Digital Contents

image34.png
BMU SCHE

Courses

image35.png
BMU Bachelor Courses

BMU SCHE Courses

CS101 Introduction to OO Programming

Introduction to IT Systems

5102 Objects and Data Abstraction
C5103 Algorithms and Data Struclures
5330 Development of Mobile Applications

Programming Fundamentals

JAVA 1: Fundamentals of Programming

'SE201 Introduction to Software Engineering

T390 Professional Practice and Ethics

JAVA2: Object-Oriented Programming
JAVA 3: GUI and Graphics Programing
JAVA 4: Data Structures and Algorithms-Part A

JAVA 5 Data Structures and Algorthms-Part B

5220 Computer Architecture

17381 Information Security and Safety

\

Java 8: Java Programming for Android

\ JAVAS : Advanced Java Programming
Java 7: Java Enterprise Edition

(55311 Sotvwere Design an Arohiectre

*v'

Software Development Process and Methodologies

CS230 Distributed Systems.

'SE321 Quality Assurance, Testing and Maintenance ’§

11270 T Infrastructure

Software Construction

Software Development Project

‘5345 Management of Digtal Contents

Intenship for Java Developer

image36.png
Short-Cycle Programme for Junior Java Developer
Duration: 12 months 60 ECTS

(Days) Days Days Hours

1 _[KIT01 Introductionfo T systems [15 | 14 | 0 | 42 | 4
| 2 |KI102 Programming Fundamentals [1 [8 [2 [30 [3 |
6 _[KI201 Java 4. Data Structures and Algorthms —PartA | 16 | 13 | 2 | 45 | 4
6 [KI203 Java 6: Advanced JavaProgramming | 15 | 12 | 2 | 42 | 4
[0 |KI204 Java 7: Java Enterprise Edition |24 |21 | 2 | 60 | 7
12 [KI301 Software Construction |21 | 18 | 2 | 60 | 6
| 14 [Kl402Intership8weeks) | 40 [o0 [o0 [0 [3 |
— 1 TOTAL| 2530 | 1680 | 320

image37.png
Onime)
lessons,

Workshop

image38.png
(T K o K e S

image39.png
Labels

Sections: . New knowledge

Example

. Test or/and assignment

Video clip

(0] Forom, e

image40.png
Online

lesson

Learning Learning
Unit Object

'
;
>
Learning
Task

Figure 4.4

!

B‘
e
5 (52
2

Learning steps

image41.png
Table T2: Learning Unit Specification

Learning

UnitNo. | 10

Learning
Unit Title

JMS and Message Driven Beans

Learning Objective

Understanding and use of Java Messaging System and message driven beans in

Java EE applications.

Step Sub-step Topic: Learning content, examples and tasks Learning Outcomes
Learning Introduction to JMS Understanding the
basics of Java
1 Example Example 1- New JMS project Messaging System
Task Task 1 — Create new JMS project
Learning Creating JMS resources UnderstandingJMS
Example 2 — Adding JMS destination to application resources
2 Example
server
Task Task 2 — Create new JMS destination
Learning Implementing a JMS message producer UnderstandingJMS
message producers
3 Example Example 3 — JMS producer model
Task Task 3 — Create JMS producer
. Consuming JMS messages with message-driven Understanding the
Learning .
beans process of consuming
4 £ | Example 4 — JMS consumer creation JMS messages with
xample Example 5 - Java Messaging Service application message-driven beans
Task Task 4 - Create Java Message — driven beans
Task 5 — Upgrade Example 5
5 Test Online Test 10 Verification of the
acquired knowledge

image42.png
02-8QL
KREIRANJE TABELE COURSE

Naredba create kreira tabelu u bazi podataka. Pored naziva tabele, potrebno je navesti sve njene
atribute i njihove tipove podataka.

01 b Ve e el 6 e Ok W Goure 5 i sl |
e v Ot e i Cora o | POt

v st m e et 9 s e 4
e 2 o s e,

oo s e e cost s o et

© LLnar oo e s et S 18
v

e st et s o s .
[t

oot a6 K s s

AR ETRORTA B e ot et v v s st
©0006000000000000

image43.png
workshop (F2F, 2h) - online learning (min. 3h per
| |internship (8 h per day) examination day

| 1 |Ki101introductiontoITsystems (4ECTS) | 2/10/2017] | [[| | |

Number of days: 14+0+1, Online learning hours: 42 ------
oot | | | ||

[2 [KiZ02 Programming Fundamentals GECTS) | 23/10p2007] | | | | | |
[Number of days: 8+2+1, Online learning hours: 30 | 30/10/2017] | | —

3 [KI103 Java L: Fundamentals of Programming (s€CTS) | 6/1tj2007] | | | | | |
Dani: 14+2+1, Online learning hours: 48 ------
B o/11/2007] | —
7 [KiZ04 Java 2: Object-oriented programming (RECTS | 27/itj2007] | | | | | |
 [Number of days:10+2+1, Online learning hours: 36____| 4/12/2017] | | | |
I
Number of days: 14+2+1, Online learning hours: 48 ------
B as/a017] | ||
| |NewvearsHolidays I 1 I [[I |
6 [K1201 Java 4: Data Structures and Algorithms —PartA(d _s/ij20i8] | | | | | |
Number of daysi: 13+42+1, Online learning hours: 45 ------
B 32/1/2018] —
7 [Ki202 Java 5: Data Structures and Algorithms —Part B(3€| 29/1/2058] | | | | | |
Number of days: 13+2+1, Online learning hours: 45 ------
ECTS:4 12/2/2018 |

K1203 Java 6: Advanced Java Programming (4 ECTS) 19/2/2018]
Number of days: 12+2+1, Online learning hours: 42 26/2/2018 ---
5/3/2018 IR
12/3/2018 — T T 1 |
18/3/2018 T
26/3/2018 1
2/4/2018 e
3/a/2018 — 1 T 1 |
16/4/2018 | |
23/4/2018 | |
30/4/2018 — T T 1 |
7/5/2018 1
14/5/2018 e
K1301 Software Construction (6 ECTS) 21/5/20.8] | | | | | |
Number of days: 18+2+1, Online learning hours: 60 | 28/5/2018] | | | | | |
eCTs:6 Y21 N I I I
11/6/2018 | |

13 |K1401 Software Development Project (8 ECTS) 18/6/2018] | | | | |

Number of days: 5+10+1, Online learning hours: 45 25/6/2018
2/7/2018

Examination week (second term) 9/7/2018| |

SUMMER HOLIDAYS

T4 [K1402 Internship (8 weeks, 8 hours/day)B ECTS) | e/ezors] | | | | | |

Number of days: 40+1, Working hours: 320 ------
I I I
72 I I
TV
YL
7Y I I
S

KI204 Java 7: Java Enterprise Edition (7 ECTS)
Number of days: 21+2+1, Online learning hours: 69

10]KI205 Java 8: Pragramming in Java on Android Plaform

Number of days: 11+2+1, Online learning hours: 39

11 |KI206 Development Process and Methodologies (5 ECTS)

Number of daysi: 15+2+1, Online learning hours: 51

12

image1.png
Introduction of part-time and
short cycle studies in Serbia

(e e

Partnors Technical Report

'DEVELOPMENT OF CURRICULUM OF SCHE PROGRAM
PROGRAMMING IN JAVA

